

Original Article (Pages: 15449-15459)

The Effect of Selected Motor Games on Executive Functions of Children with Developmental Coordination Disorders

*Samane Damanpak¹, Amir Hamzeh Sabzi²

¹ Assistant Professor, Department of Physical Education, Tonekabon Branch, Islamic Azad University, Mazandaran, Iran.

² Assistant Professor, Department of Physical Education, Payame Noor University, Tehran, Iran.

Abstract

Background: This study aimed to determine the effect of selected motor games on executive functions of children with developmental coordination disorders.

Methods: This was an experimental study with pretest-posttest design conducted in Tehran, Iran. The participants were 30 children who were identified and selected based on diagnostic criteria in two stages and were randomly divided into experimental and control groups. The experimental group performed motor games for 24 sessions during eight weeks, three sessions per week, every other day, and each session for 45 to 60 minutes. In the pretest and posttest, the Coolidge Executive Functioning scale (2002) was used to measure the Executive Functions of the subjects. Disorder Levels were measured using the data analyzed through SPSS software version 22.

Results: The results showed that after controlling the pretest levels, organizing, inhibition, decision making-planning, and the overall score of executive functions in the experimental group were significantly lower than the control group, in the posttest (p < 0.05).

Conclusion: Based on the results, the motor games intervention for eight weeks effectively improved the executive functions of children with developmental coordination disorders and can be used as an appropriate intervention.

Key Words: Childhood, Cognitive development, Developmental Coordination Disorders, Motor game, Motor interventions.

<u>* Please cite this article as</u>: Damanpak S, Hamzeh Sabzi A. The Effect of Selected Motor Games on Executive Functions of Children with Developmental Coordination Disorders. Int J Pediatr 2022; 10 (2):15449-15459. DOI: **10.22038/IJP.2021.57638.4523**

Received date: May.9,2021; Accepted date:May.20,2021

^{*} Corresponding Author:

Samane Damanpak, Assistant Professor, Department of Physical Education, Tonekabon Branch, Islamic Azad University, Mazandaran, Iran. Email: sa.damanpak@gmail.com

1- INTRODUCTION

Developmental The Coordination Disorder (DCD) occurs in childhood, with a 6% prevalence in children (1); and 3 to 7 times more likely to occur in boys than in girls (2). Children and adolescents with this disorder are less likely to engage in activities requiring and physical motor responses and show intolerance. failure. and low self-esteem (3, 4). Studies have shown that children with the disorder have difficulty not only in motor control (5), but also in psychosocial adaptation (such as low selfconfidence, depression, anxiety, and loneliness), cognitive control (6, 7). and also in executive functions (7). Executive functions responsible are individual's the participation in for and organized perceptions, purposeful thoughts, and emotions, actions brain function. dependent on especially the Prefrontal Cortex (8), review and regulate cognitive and processes during complex cognitive tasks (9). Studies in children with developmental coordination disorders have shown that these children suffer from failure in some components of executive functions such as organization, decision making, planning, purposeful movements. adjusting speed and new movements, working memory, inhibition, and executive attention (10, 11). In case of the lack of an early diagnosis and for neuropsychiatric proper treatment disorders such as executive dysfunction, such problems persist at an older age, resulting in problems for doing homework children in and social behaviors (12). It has been suggested that early educational and psychological interventions are effective in improving basic skills or growth indicators, including executive functions and children's attention (13,

therefore. 14): such problems in children can be resolved by timely interventions, such as play therapy. According to Piaget and Vygotsky, play is the main factor in a child's cognitive development. Neuromuscular perceptualand cognitive development is due to the early games during brain development, quantitatively and qualitatively. The golden period of a child's development goes through play, and children first understand and know themselves and then the world in the natural process of games (15). This study examines the effect of the selected motor games on the executive functions of these children due to the weakness of children with developmental coordination disorders in executive functions and the need for play-based intervention programs.

2-MATERIALS AND METHODS

2-1. Study design and population

This study was experimental with a pretest-posttest design, and a control group. The statistical sample included elementary 30 school students in selected purposeful Tonekabon by sampling. First, 50 children suspected of developmental coordination disorder were identified by school physical educators. Then, their parents were asked to complete the DCDQ questionnaire. Children who scored less than 45 on the questionnaire were considered as children with DCD. After obtaining written parental consent, 30 students were selected as the sample and randomly divided into experimental (15 children) and control children) groups. Parents (15)were also assured that all relevant information would be kept confidential.

2-1.1. Inclusion and exclusion criteria

Inclusion criteria were the developmental coordination disorder, parental consent, calendar age of 9 to 12 years, and lack of physical and motor problems and exclusion criteria were not completing the questionnaire, not attending the posttest on time, and more than three sessions absence.

2-2. Ethical considerations

The study was conducted in accordance with the Declaration of Helsinki, approved by the Department Educational of Psychology and Ethics Committee, Sciences and written informed consent was obtained from all subjects prior to inclusion.

2-3. Assessment Tools

The data collection instruments, in the present study, were the Developmental Coordination Disorder Questionnaire (DCDQ) and the Coolidge Executive Functioning Scale.

2-3-1. Developmental coordination disorder questionnaire

This is a suitable criterion for children with DCD. This questionnaire should be responded to by the parents to identify 5-to-15- year-old DCD children. It has 15 questions on a 5point Likert scale. Children with a score below 45 on this questionnaire are considered to suffer from DCD. The validity and reliability of the present questionnaire are reported as 88% and 83%, respectively (16).

2-3-2. Executive Functioning questionnaire

Coolidge Executive Functioning scale (2002)was developed to examine neuropsychological and some behavioral disorders in 5-to-17-yearold children and adolescents. This questionnaire executive assesses

function deficits. Each disorder in this specific test has a and separate subscale that two of these subscales with 19 items evaluate executive functions. This test has a 4-point scale: 1- never, 2- sometimes, 3- usually, 4always. So never is assigned 0. sometimes 1, usually 2, and always 3. Ouestions 1 to 8 assess the planning decision-making function, questions 9 to 16 organization, and questions 17 to 19 inhibition. In Coolidge et al., Cronbach's alpha reliability coefficient for this scale was 0.84, and its testreliability retest was 0.81 (17).Cronbach's alpha showed an internal consistency of 0.91 and 0.81 for organization, 0.82 for decisionmaking, and 0.52 for inhibition (18).

2-4. Intervention

The Selected games are played for 24 sessions (eight weeks), three sessions per week, every other day, and each session for 45 to 60 minutes (Table 1). Each session consists of a 10minute warm-up, a 45-min movement intervention, and a 5-min cool down. The warm-up phase includes walking and stretching exercises specified for each child. Selected games include children's sensory-motor and creative games, gross and fine movements, ball exercises, and balance. Also, light and gentle stretching movements are performed to cool down for five minutes at the end of each session (19-21). In the implementation phase, the executive functions were first assessed using questionnaire. a Then. the experimental performed group а program including movement the selected games in 24 sessions. The performed group daily control activities during the intervention and did not have any other practical and regular sports activities. Parents were again asked to complete the Executive Functioning Scale at the end of the lastsession.**Table-1:** Game-based movement intervention in the present study

Session	objective	Content			
1	Coordination	plate skating, hop, paper plates, and Wheel mill			
2	Perception	Receive balls of different sizes and weights with both hands and one hand, hit the ball to the ground and catch it, throw the ball in the air and catch it			
3	Fine skills	Painting with both hands, painting with water, clock game, and rhythmic movements			
4	Sensory-motor	Jumping and hopping on a trampoline, throwing, catching, and touching			
5	Gross skills	Walking like different animals (elephant, rabbit, crab, cat, and duck), toy box and walking on the line			
6	balance	Walk on a straight line, walk on heels and toes and move on paths drawn on the ground			
7	Coordination	plate skating, hop, paper plates, and Asiyab Becharkh, throw the ball in the air and catch it			
8	Perception	Receive balls with different sizes and weights with both hands and one hand, hit the ball to the ground and catch it, throw the ball in the air and catch it			
9	Fine skills	Painting with both hands, painting with water, clock game, and rhythmic movements			
10	Sensory-motor	Jumping and hopping on a trampoline, throwing, catching, and touching.			
11	Gross skills	Walking like different animals, stone - footprint, toy box, walking on the line and throwing the ball towards the wall			
12	balance	Walk in different directions and different step sizes and on different surfaces			
13	Coordination	plate skating, hop, paper plates, and Asiyab Becharkh, throw the ball in the air and catch it			
14	Perception	Receive balls with different sizes and weights with both hands and one hand, hit the ball to the ground and catch it, throw the ball in the air and catch it			
15	Fine skills	Painting with both hands, painting with water, clock game, and rhythmic movements			
16	Sensory-motor	Jumping and hopping on a trampoline, throwing, catching, and touching			
17	Gross skills	Walking like different animals (elephant, rabbit, crab, cat, and duck), stone - footprint, toy box, walking on the line, throw the ball towards the wall			
18	balance	Walking on the ground with a ball and in different directions			
19	Coordination	Throw the ball with one hand and both hands forward and backward in sit and stance positions and Static Dribbling with the ball with both hands and one hand			
20	Perception	Throw in the air the ball and catch it, balloon volleyball, chasing a balloon, and hitting a balloon in the air			
21	Fine skills	Play with fingers, cut paper with scissors with the dominant and non- dominant hand			
22	Sensory-motor	Jumping and hopping on a trampoline, throwing, catching, and touching			
23	Gross skills	Zigzag jump in large and small steps, jump from a mat on another mat, throw a large ball and kick it			
24	balance	Walking and running on marked paths on the ground			

2-5. Data Analysis

For data analysis, the Smirnov Kolmograph test and analysis of covariance were used. The significance level was p < 0.05.

3- RESULTS

The demographic characteristics of the participants are demonstrated in **Table 2**.

Table-2: Demographic characteristics of the participants.

Groups	Age (years) (Mean± SD)	Weight (kg) (Mean± SD)	Height(cm) (Mean± SD)
Experimental	10.8±0.4	34.3±5.6	137.7±9.5
Control	10.6±0.5	33.9±5.9	136.5±7.5

The results of Kolmogorov-Smirnov test the normal distribution of the data 0.05). After examining (p>the assumptions of analysis of covariance, four series of analysis of covariance were used for intergroup comparisons group variable which the in (experimental / control) as an independent variable, the number of decision making-Planning, organizing, inhibition and overall executive functions was considered as dependent variables and pretest values of the variables were considered as a control variable.

The results of these analyzes are 3. The results presented in Table regarding the Decision makingplanning showed that after controlling the effect of the pretest, the impact of on decision makingthe group planning is statistically significant (η^2) = 0.39, p = 0.001, F = 17.437),meaning that there is a significant difference between the experimental and control groups in the posttest. regarding Also. the results the Organizing showed that after controlling the effect of the pretest, the impact of the group organizing is statistically significant ($\eta^2 = 0.48$, p = 0.001, F = 29.112), meaning that, in the posttest, there is a significant difference between the experimental and control groups in this variable. the Inhibition results showed Also. that after controlling the effect of the pretest, the impact of the group on the inhibition was statistically significant $(\eta^2 = 0.33, p = 0.001, F = 13.747),$ meaning that there is a significant difference between experimental the and control groups in the posttest. Also, the results of the overall score of executive functions showed that after controlling the effect of the pretest, the impact of the group on executive functions is statistically significant (η^2) = 0.54, p = 0.001, F = 32.844),meaning that there is a significant difference between the experimental and control groups in the posttest. Considering the mean values of the groups in the posttest, it can be concluded that the score of decision making-planning, organizing, inhibition, and the overall score of executive functions in the experimental group is significantly lower than that in the control group. In other words, the motor games had a significant effect on decision makingplanning. organizing, inhibition. and children's overall executive functions score. ETA also indicates that 39% of the reduction in Decision makingplanning, 48% of the decrease in Organizing, 33% of reduction in Inhibition, and 54% of reduction in the overall score of executive functions in children is derived from the effect of motor games.

	Phase	Experimental	control	F	Р	η2
Variables		(n=15)	(n=15)			
		Mean \pm SD	Mean \pm SD			
Decision making-	Pretest	12.6±5.5	12.3 ± 5.8	17.437	0.001	0.39
Planning	Post-test	10.7 ± 5.4	12.1±5.5			
organizing	Pretest	9.4±3.5	9.5±3.6	29.112	0.001	0.48
organizing	Post-test	6.7±3.1	9.2±3.3			
inhibition	Pretest	4.8±2.3	4.7 ± 2.2	13.747	0.001	0.33
minoition	Post-test	3.4±2.1	4.6±2.3			
executive functions	Pretest	23.7±5.6	23.3±5.8	32.844	0.001	0.54
(overall)	Post-test	21.4±4.4	22.9±4.6			

Table-3: summary of covariance analysis results

SD: Standard Deviation.

4- DISCUSSION

This study examines the selected effectiveness of the motor executive functions games on of children with developmental coordination disorders. The results showed that the eight-week motor games increased children's executive functions compared to the control group. Also, the ETA squared showed that motor games contribution was 48% of the increase in organizing, 39% 34% increase inhibition, in increase in decision-planning, and 54% increase in executive functions of children with developmental coordination disorders. These findings are consistent with Benzing et al. (22), Pan et al. (23).

The impacts of cognitive rehabilitation well documented have been on children's executive functions with DCD, and the knowledge is growing, but the effects of motor games on executive functions unknown. are According to the findings of the present study, the eight-week motor games impact and improve the

executive functions of children with developmental coordination disorders. Motor games require children to organize their behaviors and process information and make decisions about movement, so it seems that these games engage the mind and body of regulate children in this study, children's behaviors and improve executive functions in these children. These results are in line with the present study's findings regarding the positive effect of motion game interventions on improving executive functions in Children with DCD. Therefore, it can be said that although executive functions of children the with DCD are weaker than healthy children, the effect of motor games on executive functions of the these children is significant and important. This can help solve their problems to some extent (24). Improving executive functions due to motor games can also be used to activate the nervous system (25), increase visual perception along with increasing visual signals (26), and improve nervous and cognitive information health (27).increase

performance (28),processing and increase the efficiency of For example, neurotransmitters (29).executive functions are a function of the prefrontal cortex (30). The prefrontal cortex is a large area in front of the precentral gyrus which includes most superior, middle, and frontal gyrus, orbital inferior gyri, most of the internal frontal gyrus, and cingulate gyrus (31). Anterior The prefrontal cortex acts in close contact with the motor cortex to plan complex sequences and of motor patterns actions. Most of the output signals from the prefrontal cortex to the through locomotor system pass the caudal portion of the basal-thalamus feedback circuit for motor This programming. part provides many parallel and sequential components of motor stimulation. The prefrontal cortex is essential for longterm thought processes in the brain. This is probably due to some of the capabilities of the prefrontal same cortex that make it possible to plan motor activities. This area can also process non-motor information from large areas of the brain, and as a result. makes non-motor types of thinking possible along with motor types of thinking, and a type of shortterm memory called working memory is saved in this area (32). Also. which inhibition. is one of the executive functions, is formed in the brain The prefrontal cortex. is a flexible organ that can regain its lost function. In the brain recovery process, other brain areas gradually take over the functions of the damaged parts, and new neural pathways are formed. Cognitive and motor activities minimize the adverse effects of brain damage by helping the brain recognize and shape these alternative pathways This provides (33). evidence а possible explanation for the findings

of the present study that the participants' executive functions improved through motor games. The results of the present study showed that selected motor games impacted the function of the organization and improved the function of the organization in the experimental group as compared to the control group. Poor organization function is the cause of many of DCD children's behavioral disorders in planning and optimal use of time, the correct use of paper in writing (34), academic performance, and routine homework. In fact, it can be said that the inability of the child to organize challenging and new tasks is probably due to the weakness of with children developmental coordination disorders in the organization function. Past research has shown that organization is mainly related to the proper functioning of the frontal and prefrontal cortex (35) and motor activities that such as taekwondo improve sensory organization and balance in children developmental with coordination disorders (36). Other results of the showed present study that selected motor games impacted the decisionplanning function and improved the decision-planning function compared to the control group. The decision making-planning function has а significant role in academic performance, planning, relative motor voluntary strength, and movements (37). This finding helps researchers better understand the cause of poor academic performance and motor planning in children with developmental coordination disorder. The decision-making function allows the child to delay the acquisition of the reinforcer and to engage in homework and daily activities in a task-oriented manner. As in previous research, the present study's findings showed that

significantly improve motor games decision-making (38. 39). Also, regarding the inhibition variable, the findings indicated that the selected motor games impacted the inhibition function and improved the inhibition compared the function to control group. Based on the inhibition model (40), it is suggested that the proper functioning of executive functions depends on the proper inhibition function in the frontal and prefrontal In other words. cortex. when functioning inhibition is not performed properly, executive the functions will not function properly, the and as a result. person has difficulty in motor control and construction. This finding is consistent with the research that shows that cognitive exercise improves inhibition function (41, 42). The findings of the present study suggest that teachers, therapists parents, and should be informed on the limitations and benefits of relative different treatments, and it should be, further, taken into account that the treatments such as play therapy do not require formal situations and special instruments and can be applied in a different situation and have associated dependencies with fewer and side effects. Therefore, it is recommended that motor games be used as an independent intervention to address weakness the in the executive functions of children with developmental coordination disorders.

4-1. Limitations of the study

One limitation of this research was that the subjects were from only one gender. Additionally, we faced noncooperation of some parents, and the lack of accurate screening of children of psychological in terms status. the findings should Furthermore. be generalized carefully because the samples were not selected from specific centers.

5- CONCLUSION

results. motor According to the games are beneficial in improving executive functions in children with developmental coordination disorder, because along with being attractive and pleasant, they can meet motor requirements and challenge motor and cognitive systems.

6- CONFLICT OF INTEREST

None

7- REFERENCES

McLeod KR. 1. Langevin LM. Goodyear BG, Dewey D. Functional connectivity of neural motor networks disrupted in children with is disorder developmental coordination attention-deficit/hyperactivity and disorder. NeuroImage: Clinical. 2014; 4:566-75.

2. Kadesjo B, Gillberg C. Developmental coordination disorder in Swedish 7-year-old children. Journal of the American Academy of child & adolescent psychiatry. 1999; 38(7):820-8.

3. Chen I-C, Tsai P-L, Hsu Y-W, Ma H-I, Lai H-A. Everyday memory in children with developmental coordination disorder. Research in developmental disabilities. 2013; 34(1):687-94.

4. Fliers E, Rommelse N, Vermeulen S, Altink M, Buschgens C, Faraone S, et al. Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender. Journal of neural transmission. 2008; 115(2):211-20.

5. Wilson PH, Ruddock S, Smits-Engelsman B, Polatajko H, Blank R. Understanding performance deficits in developmental coordination disorder: a meta-analysis of recent research. Developmental Medicine & Child Neurology. 2013; 55(3):217-28.

Cairney J, Rigoli D, 6. Piek J. Developmental coordination disorder and internalizing problems in children: environmental stress the hypothesis elaborated. Developmental Review. 2013; 33(3):217-28.

7. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a review and update. European Journal of Paediatric Neurology. 2012; 16(6):573-81.

8. Stuss DT, Alexander MP. Executive functions and the frontal lobes: a conceptual view. Psychological research. 2000; 63(3):289-98.

9. McLennan B, McIlveen P, Perera HN. Pre-service teachers' self-efficacy mediates the relationship between career adaptability and career optimism. Teaching and Teacher Education. 2017; 6:176-185.

10. Rahimi-Golkhandan S. Piek J. Wilson P. Hot Steenbergen B. executive function in children with developmental coordination disorder: Evidence for heightened sensitivity to immediate reward. Cognitive Development. 2014; 32:23-37.

E, 11. Michel Roethlisberger M. Neuenschwander R. Roebers CM. Development of cognitive skills in with children motor coordination impairments at 12-month follow-up. Neuropsychology. 2011: Child 17(2):151-72.

12. Debrabant J, Vingerhoets G, Van Waelvelde H, Leemans A, Taymans T, Caeyenberghs K. Brain connectomics of visual-motor deficits in children with developmental coordination disorder. The Journal of pediatrics. 2016; 169:21-7. 13. Zelazo PD, Müller U. Executive function in typical and atypical development. 2011.

AH 14. Sabzi DS. Tatari Hasan Gavyar M Effect of 12 Sessions of Vestibular Stimulation Exercises on the Balance Performance in Children with Developmental Coordination Rehabilitation Disorder. Journal of Medicine. 2019; 8(3):1-8.

15. Hamidian Iahromi Ν RF. The effect of Haghighat SH. local games indigenous executive on cognitive functions in children with attention deficit hyperactivity disorder. Journal of Exceptional Education. 2012; 12(111):29-41.

16. Moradi H, Sohrabi M, Mones Tusi M. The effect of exercises with contextual interference of training on attention problems in children with developmental coordination disorder. Journal of Shahrekord University of Medical Sciences. 2017; 19(5):46-59.

17. Coolidge FL, Thede LL, Stewart Coolidge SE, Segal DL. The Personality and Neuropsychological Inventory for Children (CPNI) Preliminary Psychometric Characteristics. Behavior modification. 2002; 26(4):550-66.

18. Alizadeh H, Zahedipour M. Executive functions in children with and without developmental coordination disorder. Advances in Cognitive Science. 2004; 6(3):49-56.

19. Karim AEA, Mohammed AH. Effectiveness of sensory integration program in motor skills in children autism. Egyptian Journal with of Medical Human Genetics. 2015; 16(4):375-80.

20. LaGasse AB, Hardy MW. Rhythm, movement, and autism: using rhythmic rehabilitation research as a model for autism. Frontiers in integrative neuroscience. 2013; 7:1-9.

21. Karbalaie M, Shojaei M, Ghasemi A. Effectiveness of motor games on clinical symptoms intensity in children with Autism Spectrum Disorder. Empowering Exceptional Children. 2020; 11(3):1-11.

22. Benzing V, Chang Y-K, Schmidt M. Acute physical activity enhances executive functions in children with ADHD. Scientific reports. 2018; 8(1):1-10.

23. Pan C-Y, Tsai C-L, Chu C-H, Sung M-C, Huang C-Y, Ma W-Y. Effects of physical exercise intervention on motor skills and executive functions in children with ADHD: A pilot study. Journal of attention disorders. 2019; 23(4):384-97.

24. Ball MF. Developmental coordination disorder: Hints and Tips for the Activities of daily living: Jessica Kingsley Publishers; 2002.

25. Eimer M, Van Velzen J, Gherri E, Press C. Manual response preparation and saccade programming are linked to attention shifts: ERP evidence for attentional orienting covert and spatially specific modulations of visual processing. Brain research. 2006; 1105(1):7-19.

26. Norton DJ, McBain RK, Öngür D, Chen Y. Perceptual training strongly improves visual motion perception in schizophrenia. Brain and Cognition. 2011; 77(2):248-56.

27. Velikonja O, Čurić K, Ožura A, SŠ. Influence Jazbec of sports climbing spasticity, and yoga on cognitive function, mood and fatigue in patients multiple sclerosis. with Clinical neurology and neurosurgery. 2010; 112(7):597-601.

28. Audiffren M, Tomporowski PD, Zagrodnik J. Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task. Acta Psychologica. 2010; 129(3):410-419.

29. Leung L-Y, Tong K-Y, Zhang S-M, Zeng X-H, Zhang K-P, Zheng X-X. Neurochemical effects of exercise and neuromuscular electrical stimulation on brain after stroke: a microdialysis study using rat model. Neuroscience letters. 2006; 397(1-2):135-139.

30. Stuss DT, Levine B. Adult clinical neuropsychology: lessons from studies of the frontal lobes. Annual review of psychology. 2002; 53(1):401-33.

31. Snell RS. Clinical neuroanatomy: Lippincott Williams & Wilkins; 2010.

32. Guyton A, Hall J. Textbook of medical physiology, 11th. Elsevier Inc.; 2006. p. 717-22.

33. Schott N, El-Rajab I, Klotzbier T. Cognitive-motor interference during fine and gross motor tasks in children with Developmental Coordination Disorder (DCD). Research in developmental disabilities. 2016; 57:136-48.

34. Missiuna C, Ont OR. Children with developmental coordination disorder: At home and in the classroom: CanChild Centre for Childhood Disability Research; 1999.

35. Goldstein S, Goldstein M. Managing attention deficit hyperactivity disorder in children: A guide for practitioners: John Wiley & Sons Inc; 1998.

36. Fong SS, Tsang WW, Ng GY. Taekwondo training improves sensory organization and balance control in children with developmental coordination disorder: A randomized controlled trial. Research in Developmental Disabilities. 2012; 33(1):85-95.

37. Wilson PH, Maruff P, Ives S, Currie J. Abnormalities of motor and praxis imagery in children with DCD. Human movement science. 2001; 20(1-2):135-59.

38. Pless M, Carlsson M. Effects of skill intervention motor on coordination disorder: developmental Α meta-analysis. Adapted physical activity quarterly. 2000; 17(4):381-401.

39. Lorains M, Ball K, MacMahon C. An above real time training intervention for sport decision making. Psychology of Sport and Exercise. 2013; 14(5):670-4.

40. Barkley RA. ADHD and the nature of self-control: Guilford press; 1997.

41. Khaksar Boldaji MA AH, Kadivar P, Hasan Abadi HR, Arjomandnia A. The Effectiveness of computer-based cognitive training on working memory on attention, response control, and central executive of working memory of children with specific learning disabilities. Social Cognition. 2018; 7(2):172-86.

42. Robatmili S. The effect of computer-assisted cognitive rehabilitation on working memory in children with ADHD. International Journal of Psychology (IPA). 2019; 13(1):183-205.