Systematic Review (Pages: 19729-19739)

Harnessing Lymphocyte-Cytokine Networks to Disrupt Current Paradigms in Childhood Nephrotic Syndrome Management: A Systematic Evidence Synthesis

Maryam Esteghamati ¹, Mohammad Satarzadeh ², Somayeh Shabib ³, * Mahbod Soltani ⁴

Abstract

Background and Objectives: Pediatric nephrotic syndrome (NS) is characterized by immune dysregulation, with steroid resistance posing a significant therapeutic challenge. This systematic review examines the cytokine and lymphocyte profile in NS to support novel immunotherapies.

Method: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched PubMed, Scopus, and Web of Science (2014-2024) for studies on laboratory-measured serum immune mediators in children (<15 years old) with NS after undergoing steroid treatment. Studies that reported genetic polymorphisms were excluded from the review. Data regarding cytokines, lymphocytes, and immunoglobulins were reviewed and synthesized from 18 human studies.

Results and Limitations: There were elevated levels of pro-inflammatory cytokines (IL-1 β , IL-2, IL-5, IL-6, IL-7, IL-8, IL-17A, IL-18, IL-23, TNF- α , IFN- γ) in active NS compared to the down-regulated anti-inflammatory cytokine, IL-10, and regulatory T cells (Treg). The Th17/Treg imbalance was prominent in the pathology of NS and a distinguishing feature of steroid-resistant nephrotic syndrome (SRNS). Results on IL-4 and IL-13 showed differing patterns. Limitations of this review are the human study focus which may exclude a more multifactorial cytokine network.

Conclusion: Targeting the Th17/Treg axis and pro-inflammatory cytokines in NS may represent a feasible adjunct or alternative to steroids, especially in SRNS, and would benefit from further clinical trials.

Key Words: Immunotherapy; Lymphocyte; Nephrotic syndrome; Pediatric.

* Please cite this article as: Esteghamati M, Satarzadeh M, Shabib S, Soltani M. Harnessing Lymphocyte-Cytokine Networks to Disrupt Current Paradigms in Childhood Nephrotic Syndrome Management: A Systematic Evidence Synthesis. J Ped Perspect 2025; 13 (10):19729-19739. DOI: 10.22038/jpp.2025.90628.5592

Mahbod Soltani; School of Medicine, Arak University of Medical Sciences, Iran, Arak, Iran. Email: mahbod.s.97@gmail.com

¹ Department of pediatrics, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

² Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

³ Department of Clinical Pharmacology, School of Medicine, Arak University of Medical Sciences, Arak, Markazi province, Iran.

⁴ School of Medicine, Arak University of Medical Sciences, Iran, Arak, Iran.

^{*}Corresponding Author:

1- INTRODUCTION

Pediatric nephrotic syndrome (NS) having is defined as proteinuria, hypoalbuminemia. edema. and hyperlipidemia and has an incidence of 1.15-16.9 per 100,000 children with longterm adverse outcomes, including renal failure in some cases Glucocorticoids are the most common treatment for NS and achieve substantial remission in many patients, generally within four weeks (3). Steroid-resistant nephrotic syndrome (SRNS) represents a clinical dilemma as inflammation continues despite immunosuppression, indicating a treatment gap (4). Therapies such as rituximab and some chemotherapy options show some efficacy, but many do not result in remission of NS, suggesting that existing therapies do not sufficiently some of the address underlying mechanisms of the disease (5, 6).

The presence of a circulating immune mediator attracts the attention of treatment (7, 8), NS is driven by a pronounced elevation of interleukinsIL-6, IL-18, and othersworking alongside CD4+lymphocytes to sustain chronic glomerular inflammation (9, 10). Emerging insights highlight altered interleukin receptor genes (such as IL-2), amplified JAK/STAT signaling, and disrupted IL-10 responses in podocytes as critical yet under addressed contributors (11, 12). Current treatments, constrained by their inability to fully immune dynamics, counter these underscore the demand for innovative strategies grounded in a deeper immune understanding.

The fragmented cytokine landscape in childhood NS motivated this systematic synthesis of a cohesive profile. This review delineates the cytokine framework of NS, advocating for a pivot toward precision immune-targeted therapies.

2- MATERIALS AND METHODS

2-1. Protocol and Registration

The systematic review was developed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Along the lines of methodological rigor and reducing bias, we adopted the Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0, which requires assessing all clinical studies on area of allocation concealment, blinding of participants and personnel, and outcome assessors. The question was framed according to PICO (Population, Intervention, Comparison, Outcomes), which narrowed the scope of the research. The work was prospectively registered with the Prospective Register of Systematic Reviews (PROSPERO) with identifier CRD42025640192 the promote transparency and reproducibility.

2-2. Eligibility Criteria and Search Strategy

A systematic review of articles published from January 2014 through January 2024 in the Web of Science, PubMed, and Scopus databases was carried out because of their extensive biomedical literature coverage. NS was defined following the National Institute of Diabetes and Digestive and Kidney Diseases (13), consistent with International Classification of Diseases 11th Revision (ICD-11: Code GB41), characterized by four diagnostic hallmarks:

- Proteinuria (excessive urinary protein)
- Hypoalbuminemia (low serum albumin)
- Edema (swelling of the body)
- Hyperlipidemia (high blood lipids)

This review is aimed at compiling data that will give an immunotherapy-based profile of the pediatric NS, in terms of cytokines, lymphocytes, chemokines, and inflammatory mediators. Rigorous inclusion criteria applied:

- Only English language original research articles were included; reviews, case reports, and editorials were excluded.
- Priority was given to studies that measured inflammatory mediators at the onset of NS, excluding studies with coexisting disorders.
- Studies that assessed genetic polymorphisms of inflammatory mediator-encoding genes to evaluate changes driven by NS immune were excluded.
- Studies measuring serum levels of immune components following steroid treatment were included to evaluate treatment effects.

Terms such as "nephrotic syndrome," "cytokines," "children. "lymphocytes" were optimized using the MeSH database. Two independent teams of two researchers conducted parallel searches, beginning with Web of Science, PubMed and followed by Scopus. PRISMA guidelines were followed to eliminate duplicates and non-English records, and titles and abstracts were screened collaboratively. Eligible articles were subjected to aggregation co-authored with subscription barriers solved under the first author's supervision. This process yielded a final collection of 18 studies with no further inclusions from manual citation searches. To put this in context, we crossreferenced our title in the Cochrane Database and found no systematic reviews that directly overlapped with it.

2-3. Data Extraction, Study Selection and Methodological Quality Assessment

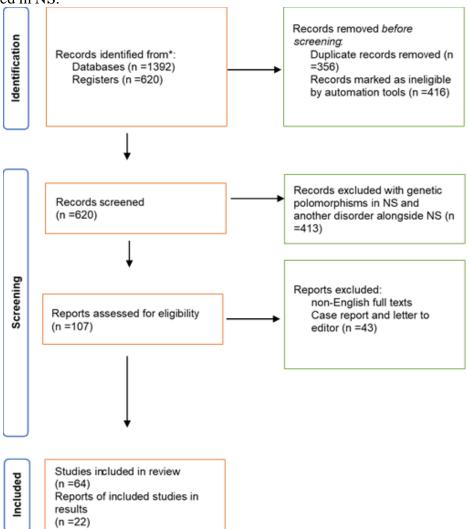
The corresponding and first authors created a structured summary table and assessed study quality using the Cochrane Risk of Bias 2 (RoB 2) tool (14), which appraisal provided robust a methodological quality. Data extraction undertaken by three authors independently and without collusion. They extracted data on NS subtype,

interleukin/cytokine profiles, immune changes, mean age/sex of the populations studied, and assessment methodologies/tools. The corresponding and first authors then synthesized the extracted data, consistently following Cochrane guidelines to minimize bias and maximize accuracy. Given some degree of heterogeneity present in the data-sets across the 18 studies, a standardized extraction tool/template was utilized, formulated and cross-verified by the authors, and we presented the outcomes with a PRISMA flow chart so that visual mapping of studies in the resultant synthesis would enhance transparency and report development alongside wider, concerted immunological efforts understand immune-mediated conditions for a wider audience.

3- RESULTS

3-1. Study Selection

Initially, review articles, case reports, and letters to the editor identified in the PubMed, Scopus, and Web of Science databases during the preliminary search were excluded. Subsequently, a pair of authors eliminated duplicate titles and evaluated the abstracts of the remaining exploring studies. Studies genetic polymorphisms in NS, as well as those examining the influence of additional disorders alongside NS, were excluded abstract screening. following filtering out non-English studies, articles underwent full-text review by two authors independently, resulting in the selection of 18 studies that addressed our research question (15-32) (Figure 1).


To maintain impartiality, a double-blind review process was implemented by the two authors. They cross-checked the safety parameters extracted from the articles against the databases using the keyword "nephrotic syndrome." Any studies potentially overlooked or erroneously excluded at various stages were re-

assessed. Ultimately, no additional studies required re-evaluation or inclusion.

Increased levels of pro-inflammatory interleukins and cytokines lead to kidney tissue damage

Levels of IL-7, IL-5, IL-1β, IL-2, IL-6, and IL-8 were increased in children with NS. This pattern was maintained in steroid-sensitive nephrotic syndrome (SSNS) compared to SRNS. Cytokines were higher during relapse than remission. One study denied a decrease in IL-8 in remission, but others agreed. Additionally, one study reported that there was no difference in levels of IL-2 in remission compared to SSNS, but its levels were increased in NS.

Higher levels of IL-18 were associated with higher levels of glomerulonephritis and renal tissue damage, which, with levamisole showing a higher induction of this cytokine, produced a relapse-free period of 3 months. Another study in NS children compared IL-18 with healthy children, which was significantly higher in the control group, and this was the only study with the opposite result. However, it confirmed that its levels were higher in steroid-sensitive children than in children resistant to these drugs, meaning that steroid resistance was associated with its reduction.

Figure-1: PRISMA flow diagram for systematic reviews which included searches of databases and registers only.

IL-4 and IL-13 levels were significantly reduced during the recovery period of SSNS and were increased in patients with NS. Only one study reported that the levels of these two interleukins were higher in the healthy children group, but it reported that SSNS showed higher levels than the SRNS group. The role of these two interleukins in the recovery of NS in the other four studies is definitely in their reduced levels.

Regarding inflammatory mediators such as TNF and interferon gamma, all studies presented the same results, which showed that NS treatment in the remission phase was associated with their reduction, and that the increase in these mediators is considered to be the main pathology of NS.

One study reported that there was no difference in IL-2 levels during remission compared to the SSNS group, but its levels were increased in NS. Children with primary nephrotic syndrome showed increased levels of IL-6, IL-17A, IL-23p19, and IL-1 β , and this increase was also observed in interleukins 15 and 10. IL-23 and IL-17 might have been involved in disrupting the balance of Th lymphocytes.

3-2. Lymphocytes Lose their Inhibitors and Regulators

The NS course was accompanied by a fundamental change in the process of activation and control of lymphocytes, which might have been due to changes in the genetic pattern of interleukins and other mediators. In non-genetic cases, these lymphocytes play a major role in the pathology of NS. Th17 showed a higher level in NS patients compared to the recovery phase, while Treg showed a significant decrease. This condition creates an autoimmune state and interleukins such as IL-17 and IL-23 play a role in it. With the increase of these two interleukins we see an increase in Th17 and these

interleukin, changes originate from γδ T cells. One article stated that the level of CD3+ and CD4+ in SSNSpatients is significantly lower than the control group, but the urinary dose of CD80 is significantly higher. However, CD 4+IL-17A was associated with an increase in another study. This increase is also evident in T-cell helper receptors, with TLR8 being significantly expressed on B and CD4+ T cells, but this study found no increase in TLR3. CD86 on B cells and ICOS on THF were increased in NS patients. These T cells carry large amounts of CD40s and are effective in regulating B lymphocyte responses immunoglobulins, including TH1, TH2 and TH17 cell subsets. Although this study found no increase in these lymphocytes and only reported an increase, another study found an increase in Th2-related interleukins as a cause of NS pathology. It mentioned should be that immunoglobulin profile of NS included increased IgA, IgM, and C3 and decreased IgG, and IgG/IgM, based on our studies. In general, T lymphocytes continue to attack the inflammatory response by losing their regulators, and B lymphocytes produce more immunoglobulins and have more active responses in NS against kidney cells. The increase in receptors and the decrease in regulators, especially the Treg/Th17 ratio, on which all studies were based, are key to the pathology of NS.

3-3. Treatment Modulated Changes

The studies available to us show that higher levels of IL-18 are beneficial for NS, and that treatment with immunosuppressive drugs reduces it, but its increase is the key to treatment with levamisole in SSNS. Children with NS and steroid-sensitive patients showed higher levels of IL-18 after treatment with levamisole, an antiparasitic drug that reduces glomerular inflammation by

stimulating the immune system and improving Th 1 and Th 2 function.

Table-1. Data extraction from articles. Terms were defined in Abbreviation part.

Doaa Mohammed Youssef (15) (2015, PMID: 26174457)IL-4, IL-13 (in SSNS)None reportedIL-2 (no difference)A Jamin (16) (2015, DOI: 10.1111/cei.12659)None reportedNone reportedNone reported
A Jamin (16) None reported None reported None
(2015, DOI: 10.1111/cei.12659)
Amal A Al-Eisa (17)None reportedIL-1β, IL-6, IL-8None
(2017, DOI: 10.2147/JIR.S124947) (in remission) reported
Doaa Mohammed Youssef (18) IL-18 (post- None reported None
(2018, DOI: 10.4103/1319-2442.235173) levamisole) reported
L Zhang (19) IL-23, IL-17 None reported None
(2018, DOI: 10.1111/sji.12629) reported
Jiayun Zhou (20) IL-18 (before IL-18 (after None
(2018, DOI: 10.3892/etm.2018.5923) treatment) treatment) reported
Xia Yang (21) None reported None reported None
2019, DOI: 10.1016/j.molimm.2019.07.001) reported
Azar Nickavar (22) $ IL-1\beta, IL-2, IL-6, IL- IL-1\beta, IL-6, IL-8 $ None
(2020, DOI: 10.18502/ijaai.v19i6.4932) 8 (in NS); IL-13, IL- (in SRNS) reported
18 (in controls)
Shipra Agrawal (23) IFN-γ, IL-5, IL-7, IFN-γ, TNF-α, IL- None
(2021, DOI: 10.1016/j.ekir.2020.12.027) IL-17A, MIP-1β (in 7, IL-13, IL-5 reported
SRNS) (post-
glucocorticoids)
Shulian Chen (24) IL-6 (in None reported None
(2021, PMCID: PMC8014369) SDNS/FRNS, SSNS) reported
Fen-fen Ni (25) IL-4, IL-13 (in AA, None reported None
(2021, DOI: 10.3389/fped.2021.651544) ANA groups) reported
Neus Roca (26) IL-6, TNF-α (in None reported IFN- γ (no
(2021, DOI: 10.1093/ckj/sfaa247) MCD vs. MN, difference)
healthy)
Jessica Forero-Delgadillo (27) None reported None reported None
(2022, DOI: 10.1371/journal.pone.0277800) reported
Andrzej Badeński (28) IL-15 (in urine, None reported None
(2023, DOI: 10.3390/ijms24086993) serum) reported
Eglal Aly Hassan (29) TNF-α, IL-18 None reported None
(2024, DOI: 10.61186/rbmb.13.1.67) reported
Asmaa A Elsehmawy (30) IL-13 None reported None
(2024, DOI: 10.33393/jcb.2024.2689) reported
Wanyu Jia (31) IL-6, CRP, PCT (in None reported None
(2024, DOI: 10.1038/s41390-023-02830-9) bacterial infection) reported
Xiaolong Ma (32) IL-1 β , IL-6, IL-10, None reported None
(2024, DOI: 10.1186/s12866-024-03667-w) IL-17A, IL-23p19 reported

4- DISCUSSION

4-1. Key Immunological Insights

NS has very close connections with primary immunological changes, and appropriate understanding of such changes can serve as a foundation for augmenting immunosuppressive therapy, particularly in the SRNS. Our research has revealed that physiological corrections in interleukin levels, as well as proinflammatory mediators such as TNF and

IFN, are accountable for stabilizing the pathology of NS, to cause effective modulations in the activity of lymphocyte subsets. Increased levels of significant inflammatory interleukins in blood and urine are associated with a dramatic decrease in established Treg cells, proposing that the interference with such immunological determinants could be key to SRNS therapies.

Th17 cells were increased, while Treg cells were reduced, disrupting the Th17/Treg axis. Elevated proinflammatory cytokines, such as IL-6 and IL-18, contributed to glomerular damage in SRNS (12, 33). The identified shift is accountable for a Th17-induced elevation of interleukins, IL-17 and IL-6 in podocytes, which causes increased stress to the glomerulus (34). A higher serum level of IL-6 and IL-2, indicators of Th2 reactions, was clearly seen in children with NS-associated glomerulonephritis Furthermore, the increased renal expression of IFN-γ and TNF-α, proinflammatory mediators of Th1, resulted in podocyte inflammation (35).

IL-18 is of particular interest as an early cytokine mediating IFN-y production and functionally augmenting naïve T cell conversions to Th1, which in turn produces additional related interleukins (36). These Th1 and Th2 subsets also regulating glomerular secrete IL-13, permeability like IL-4both capable of inducing IgE in NS while TCD4+ lymphocytes enhance IL-13 secretion. Our findings confirm elevated IL-4, IL-13, IL-7, IL-5, IL-1\(\beta\), IL-2, and IL-6, correlated with increased Th lymphocyte activity, providing a fertile chemotherapeutic ground for SRNS.

4-2. Therapeutic Implications

A growing collection of inhibitors is increasingly taking precedence over standard immunosuppressants in NS while narrowing in on Th17 hyperactivity, Treg

reestablishment. and Th1 and Th2 stabilization (37,38).Clostridium butyricum is a microbial regulator that decreases IL-10 and adjusts the Th17/Treg Our findings implicate imbalance as a central pathology in NS (39), There should be increased emphasis on these natural agents with specificity to interleukins and low resistance, suggesting a transition to more efficient treatments. Icariin inhibits IL-1 β , IL-18, and TGF- β , is equivalent to prednisone, and creates a superior control of creatinine when compared to doxorubicin (40, 41). All of these observations from preclinical models exhibit a subgroup of patients with NS for pharmacological chemotherapy would yield the most utility.

Rituximab, an essential component in the management NS; of inhibits lymphocytes and modifies IgA and IgM, thereby restoring defects in lymphocyte interaction (42), resulting in the lowest reported rates of relapse following treatment in children with NS (43). However, the efficacy of Rituximab monotherapy is inferior when compared to multi-therapies incorporating other immunosuppressants, a fact that still looms in SRNS (44), Obinutuzumab, meanwhile, in conjunction with supportive therapies following Rituximab, has shown to deplete IgG to near complete, while facilitating recovery of B-cells, and to significantly decrease relapses in children with NS (45). The benefits of multi-therapy in regard to SRNS presents a convincing argument for its clinical use and may change the course of illness for these children.

In distilling these insights, we have delineated an interleukin profile for NS that consistently identifies increased inflammatory cytokines and decreased regulatory lymphocytes, despite variability among studies. The imbalance in these components is, most significantly, the Th17/Treg imbalance and this, coupled with natural and chemical products likely

able to combat immunosuppressants, aims to refine therapeutic targets for steroid resistance.

4-3. Limitations and Future Research

It is necessary to acknowledge limitations. First, as indicated in the inclusion criteria, we only considered studies involving human beings and did not take broader cytokine combinations or mechanistic information from into account, which studies potentially contribute to our understanding of NS pathophysiology. Secondly, there was heterogeneity in the types of studies, as there were differences in study designs with respect to definitions of NS subtypes (SSNS and SRNS), sample size, and measurement type used, making it difficult to achieve consistent findings across studies. For instance, differences in IL-4 and IL-13 levels may be attributable to differences in drug assay sensitivity or variation in the patient population. Thirdly, we did not include any studies on genetic polymorphisms of inflammatory mediators which could further enhance understanding of the relationship between genetics and various immune system factors in NS. Fourthly, the review focused on just a sub-population of cytokines, and lymphocyte subsets and therefore might not have captured other immune mediators that could characterize NS pathogenesis more thoroughly.

5- CONCLUSION

Nephrotic syndrome is associated with cytokine and lymphocyte changes, we see an increase in proand inflammatory cytokines and lymphocyte imbalance during **Targeting** it. inflammatory lymphocytes may represent a promising complementary or alternative option to steroids in the management of NS, especially in steroid-resistant cases where modulation of the Th17/Treg balance may be associated with better clinical outcomes. We hope that the results

of this study can be useful in shaping future trials in steroid-resistant nephrotic syndrome.

6- ACKNOWLEDGEMENTS

We are sincerely thankful to the counselors at the Clinical Research Development Center of Bandar Abbas Children's Hospital.

7- FUNDING

This research do not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

8- ETHICAL CONSIDERATIONS AND CONSENT TO PARTICIPATE

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee as well as the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not include any studies involving animals conducted by any of the authors.

9- AVAILABILITY OF DATA AND MATERIALS

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

10- CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

11 - REFERENCES

- 1. Politano SA, Colbert GB, Hamiduzzaman N. Nephrotic Syndrome. Primary care. 2020 Sep 26;47(4):597-613.
- 2. Ademola AD, Asinobi AO, Alao MA, Olowu WA. Childhood nephrotic syndrome in Africa: epidemiology, treatment trends, and outcomes. InSeminars in Nephrology 2022 Sep 1 (Vol. 42, No. 5, p. 151311). WB Saunders.

- 3. Nagai K. Immunosuppressive agent options for primary nephrotic syndrome: A review of network meta-analyses and cost-effectiveness analysis. Medicina. 2023 Mar 17;59(3):601.
- 4. Tullus K, Webb H, Bagga A. Management of steroid-resistant nephrotic syndrome in children and adolescents. The Lancet Child & Adolescent Health. 2018 Dec 1;2(12):880-90.
- 5. Zhao X, Hwang DY, Kao HY. The role of glucocorticoid receptors in podocytes and nephrotic syndrome. Nuclear receptor research. 2018 Apr 24;5:101323.
- 6. Khatibi SM, Ardalan M, Abediazar S, Vahed SZ. The impact of steroids on the injured podocytes in nephrotic syndrome. The Journal of Steroid Biochemistry and Molecular Biology. 2020 Feb 1;196:105490.
- 7. Kaneko K, Tsuji S, Kimata T, Kitao T, Yamanouchi S, Kato S. Pathogenesis of childhood idiopathic nephrotic syndrome: a paradigm shift from T-cells to podocytes. World Journal of Pediatrics. 2015 Feb;11(1):21-8.
- 8. Chen Q, Jiang H, Ding R, Zhong J, Li L, Wan J, et al. Cell-type-specific molecular characterization of cells from circulation and kidney in IgA nephropathy with nephrotic syndrome. Frontiers in Immunology. 2023 Oct 16;14:1231937.
- 9. Abeyagunawardena AS, Thalgahagoda RS, Dissanayake PV, Abeyagunawardena S, Illangasekera YA, Karunadasa UI, et al. Short courses of daily prednisolone during upper respiratory tract infections reduce relapse frequency in childhood nephrotic syndrome. Pediatric Nephrology. 2017 Aug;32(8):1377-82.
- 10. Krebs CF, Steinmetz OM. CD4+ T cell fate in glomerulonephritis: A tale of Th1, Th17, and novel Treg subtypes. Mediators of inflammation. 2016;2016(1):5393894.

- 11. Kovalik ME, Dacanay MA, Crowley SD, Hall G. Swollen Feet: Considering the Paradoxical Roles of Interleukins in Nephrotic Syndrome. Biomedicines. 2024 Mar 26;12(4):738.
- 12. Jia Y, Xiong S, Chen H, Liu D, Wu X. Exosomes secreted by podocytes regulate the differentiation of Th17/Treg cells in idiopathic nephrotic syndrome. Heliyon. 2024 Sep 30;10(18).
- 13. Wexler DJ, Powe CE, Barbour LA, Buchanan T, Coustan DR, Corcoy R, et al. Research gaps in gestational diabetes mellitus: executive summary of a National Institute of Diabetes and Digestive and Kidney Diseases workshop. Obstetrics & Gynecology. 2018 Aug 1;132(2):496-505.
- 14. Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. bmj. 2019 Aug 28;366.
- 15. Youssef DM, Elbehidy RM, El-Shal AS, Sherief LM. T helper 1 and T helper 2 cytokines in atopic children with steroid-sensitive nephrotic syndrome. Iranian Journal of Kidney Diseases. 2015 Jul 9;9(4):298-305.
- 16. Jamin A, Dehoux L, Dossier C, Fila M, Heming N, Monteiro RC, et al. Toll-like receptor 3 expression and function in childhood idiopathic nephrotic syndrome. Clinical & Experimental Immunology. 2015 Dec;182(3):332-45.
- 17. Al-Eisa AA, Al Rushood M, Al-Attiyah RJ. Urinary excretion of IL-1β, IL-6 and IL-8 cytokines during relapse and remission of idiopathic nephrotic syndrome. Journal of inflammation research. 2017 Jan 23:1-5.
- 18. Youssef DM, Abd Al-atif AM, El-Khateeb SS, Elshal AS. Evaluation of interleukin-18 in children with steroid-sensitive nephrotic syndrome before and after using levamisole. Saudi Journal of Kidney Diseases and Transplantation. 2018 May 1;29(3):591-7.

- 19. Zhang L, Yan J, Yang B, Zhang G, Wang M, Dong S, et al. IL-23 activated γδ T cells affect Th17 cells and regulatory T cells by secreting IL-21 in children with primary nephrotic syndrome. Scandinavian Journal of Immunology. 2018 Jan;87(1):36-45.
- 20. Zhou J, Shi F, Xun W. Leptin, hs-CRP, IL-18 and urinary protein before and after treatment of children with nephrotic syndrome. Experimental and Therapeutic Medicine. 2018 May 1;15(5):4426-30.
- 21. Yang X, Tang X, Li T, Man C, Yang X, Wang M, et al. Circulating follicular T helper cells are possibly associated with low levels of serum immunoglobulin G due to impaired immunoglobulin class-switch recombination of B cells in children with primary nephrotic syndrome. Molecular immunology. 2019 Oct 1;114:162-70.
- 22. Nickavar A, Valavi E, Safaeian B, Amoori P, Moosavian M. Predictive value of serum interleukins in children with idiopathic nephrotic syndrome. Iranian Journal of Allergy, Asthma and Immunology. 2020 Dec 19;19(6):632-9.
- 23. Agrawal S, Brier ME, Kerlin BA, Smoyer WE, Mahan J, Patel H, et al. Plasma cytokine profiling to predict steroid resistance in pediatric nephrotic syndrome. Kidney International Reports. 2021 Mar 1;6(3):785-95.
- 24. Chen S, Wang J, Liang S. Clinical significance of T lymphocyte subsets, immunoglobulin and complement expression in peripheral blood of children steroid-dependent with nephrotic syndrome/frequently relapsing nephrotic syndrome. American iournal of 2021 translational research. Mar 15;13(3):1890.
- 25. Ni FF, Liu GL, Jia SL, Chen RR, Liu LB, Li CR, et al. Function of miR-24 and miR-27 in pediatric patients with

- idiopathic nephrotic syndrome. Frontiers in Pediatrics. 2021 Apr 21;9:651544.
- 26. Roca N, Martinez C, Jatem E, Madrid A, Lopez M, Segarra A. Activation of the acute inflammatory phase response in idiopathic nephrotic syndrome: association with clinicopathological phenotypes and with response to corticosteroids. Clinical kidney journal. 2021 Apr 1;14(4):1207-15.
- 27. Forero-Delgadillo J, Ochoa V, Restrepo JM, Torres-Canchala L, Nieto-Aristizábal I, Ruiz-Ordoñez I, et al. B-cell activating factor (BAFF) and its receptors' expression in pediatric nephrotic syndrome is associated with worse prognosis. PLoS One. 2022 Nov 18;17(11):e0277800.
- Badeński A, Badeńska M, Świętochowska E, Janek A, Gliwińska A, Morawiec-Knysak A, et al. Assessment of interleukin-15 (IL-15) concentration in children with idiopathic nephrotic syndrome. International Journal of Sciences. 2023 Molecular Apr 10;24(8):6993.
- 29. Hassan EA, Elsaid AM, El-Refaey AM, Abou Elzahab M, Youssef MM, Elmougy R. Association of ABCB1 (Rs10276036, C/T) Gene, IL-18, and TNFα as Risk Factors for Nephrotic Syndrome Incidence. Reports of Biochemistry & Molecular Biology. 2024 Apr;13(1):67.
- 30. Elsehmawy AA, Gouda RM, Diab FE, Saleh OI, Galal HM, Al Anany MG, et al. Relation between interleukin-13 and annexin-V levels and carotid intima-media thickness in nephrotic syndrome. Journal of Circulating Biomarkers. 2024 Jun 18;13:7.
- 31. Jia W, Dou W, Zeng H, Wang Q, Shi P, Liu J, et al. Diagnostic value of serum CRP, PCT and IL-6 in children with nephrotic syndrome complicated by infection: a single center retrospective study. Pediatric Research. 2024 Feb;95(3):722-8.

- 32. Ma X, Li T, Liu C, Ge H, Zheng D, Ma J, et al. Alterations of gut microbiota and metabolome are associated with primary nephrotic syndrome in children. BMC microbiology. 2024 Dec 5:24(1):519.
- 33. Li YY, Wei SG, Zhao X, Jia YZ, Zhang YF, Sun SZ. Th17/Treg cell expression in children with primary nephritic syndrome and the effects of ox-LDL on Th17/Treg cells. Genet Mol Res. 2016 Jun 10;15(2):1-8.
- 34. Eroğlu FK. Characterization of Functional and Molecular Properties of Circulating Extracellular Vesicles of Childhood Idiopathic Nephrotic Syndrome Patients (Doctoral dissertation, Bilkent Universitesi (Turkey)).
- 35. Stangou M, Spartalis M, Daikidou DV, Kouloukourgiotou T, Sampani E, Lambropoulou IT, et al. Impact of Th1 and Th2 cytokines in the progression of idiopathic nephrotic syndrome due to focal segmental glomerulosclerosis and minimal change disease. Journal of Nephropathology. 2016 Dec 25;6(3):187.
- 36. Kim SH, Park SJ, Han KH, Kronbichler A, Saleem MA, Oh J, et al. Pathogenesis of minimal change nephrotic syndrome: an immunological concept. Korean journal of pediatrics. 2016 May 31;59(5):205.
- 37. Kitsou K, Askiti V, Mitsioni A, Spoulou V. The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature. European Journal of Pediatrics. 2022 Apr;181(4):1395-404.
- 38. Casiraghi F, Todeschini M, Podestà MA, Mister M, Ruggiero B, Trillini M, et al. Immunophenotypic alterations in adult patients with steroid-dependent and frequently relapsing nephrotic syndrome. International Journal of Molecular Sciences. 2023 Apr 22;24(9):7687.

- 39. Li T, Ma X, Wang T, Tian W, Liu J, Shen W, et al. Clostridium butyricum inhibits the inflammation in children with primary nephrotic syndrome by regulating Th17/Tregs balance via gut-kidney axis. BMC microbiology. 2024 Mar 23;24(1):97.
- 40. Duan S, Ding Z, Liu C, Wang X, Dai E. Icariin suppresses nephrotic syndrome by inhibiting pyroptosis and epithelial-to-mesenchymal transition. Plos one. 2024 Jul 12;19(7):e0298353.
- 41. Lv J, Xue G, Zhang Y, Wang X, Dai E. Icariin synergizes therapeutic effect of dexamethasone on adriamycin-induced nephrotic syndrome. European Journal of Medical Research. 2023 Jan 27;28(1):52.
- 42. Inoki Y, Kamei K, Nishi K, Sato M, Ogura M, Ishiguro A. Incidence and risk factors of rituximab-associated hypogammaglobulinemia in patients with complicated nephrotic syndrome. Pediatric Nephrology. 2022 May;37(5):1057-66.
- 43. Zhao Z, Liao G, Li Y, Zhou S, Zou H. The efficacy and safety of rituximab in treating childhood refractory nephrotic syndrome: a meta-analysis. Scientific Reports. 2015 Feb 3;5(1):8219.
- 44. Basu B, Sander A, Roy B, Preussler S, Barua S, Mahapatra TK, et al. Efficacy of rituximab vs tacrolimus in pediatric corticosteroid-dependent nephrotic syndrome: a randomized clinical trial. JAMA pediatrics. 2018 Aug 1;172(8):757-64
- 45. Dossier C, Bonneric S, Baudouin V, Kwon T, Prim B, Cambier A, et al. Obinutuzumab in frequently relapsing and steroid-dependent nephrotic syndrome in children. Clinical Journal of the American Society of Nephrology. 2023 Dec 1;18(12):1555-62.