

Original Article (Pages: 19713-19720)

Teenage Pregnancy Age and Stunting Incidence Among Children Aged 12-24 Months: A Case-Control in Jember, Indonesian

Mareta Nabela Insani Lulu'il Maknun ¹, * Tantut Susanto ^{2,3}, Fahruddin Kurdi ², Wahyuni Fauziah ^{4,5}

Abstract

Background: Stunting is a global health issue, including in Indonesia. One of the main risk factors for stunting is teenage pregnancy resulting from early marriage, which is still common in Jember. Pregnancy during adolescence poses a risk of fetal growth disorders due to physical and psychological unpreparedness for pregnancy and childbirth. This study aims to analyze the relationship between teenage pregnancy and the incidence of stunting in children aged 12-24 months within families in Jember Regency.

Materials and Methods: This study used a retrospective design with a case-control approach. The study population consisted of toddlers aged 12-24 months. A sample of 201 participants was recruited, with 69 toddlers in the case group (stunted) and 69 in the control group (not stunted). Data were collected using a questionnaire to determine the mother's age at pregnancy and by measuring the toddlers' height and weight using a length board. Data were analyzed using the Chi-square test.

Results: The incidence of stunting was higher among mothers who were ≤ 18 years old during pregnancy (56.52%) compared to those who were > 18 years old (43.48%). The analysis showed a significant relationship between adolescent gestational age and the incidence of stunting ($\chi 2 = 11.795$, p-value = 0.001). The Odds Ratio (OR) was 3.379, indicating that teenage pregnancy carries a 3.4 times higher risk for stunting compared to adult pregnancy.

Conclusion: Adolescent pregnancy is a significant risk factor for stunting that requires intervention at the family level. Interventions should include reproductive health education, prevention of early marriage, and ensuring adequate nutrition for pregnant women.

Key Words: Early Marriage, Family, Stunting, Teenage Pregnancy.

* Please cite this article as: Maknun M.N.I.L, Susanto T, Kurdi F, Fauziah W. Teenage Pregnancy Age and Stunting Incidence Among Children Aged 12-24 Months: A Case-Control in Jember, Indonesian. J Ped Perspect 2025; 13 (10):19713-19720. **DOI:** 10.22038/jpp.2025.90536.5591

$*Corresponding\ Author:$

Prof. Tantut Susanto, MN, RN, PHN, PhD; Faculty of Nursing, Jember University, Jember, Indonesia; Tel: +62 331323450; E-mail: tantut_s.psik@unej.ac.id.

¹ Undergraduate of Nursing Program, Faculty of Nursing, Universitas Jember, Jember, Indonesia.

² Departement of Community, Family and Gerontic Nursing, Faculty of Nursing, Universitas Jember, Jember, Indonesia.

³ Center of Agronursing for Community, Family and Elderly Health, Universitas Jember, Jember, Indonesia.

⁴ Neurology Department, Dr. H Koesnadi Regional Hospital of Bondowoso, East Java, Indonesia.

⁵ Indonesian Health Council, Nursing Council, Jakarta, Indonesia.

1- INTRODUCTION

Stunting is a condition of chronic malnutrition in toddlers, characterized by a height that does not correspond to their age. In Jember, the incidence of stunting reaches 29.7%, with the highest rates in Rambipuji District (13.80%). Sumberjambe (13.16%), and Ledokombo (9.53%) (1,2). Stunting is caused by various factors, including improper breastfeeding (3,4), poor nutrition in mothers and toddlers (5), and teenage pregnancy, which is often triggered by early marriage (6,7).

Early marriage is a significant problem in Jember, with 1,295 cases recorded and the highest percentages in Sumberjambe (15%), Ledokombo (4%), and Rambipuji (2%) (8). This phenomenon is supported by data from the East Java Province Communication and Informatics Office, which recorded 15,212 applications for marriage dispensation in 2022 (9,10). Jember was one of the largest contributors with 1,388 cases (11). Approximately 80% of these cases were caused by unwanted pregnancies, while 20% were due to arranged marriages (11,12). Local culture and family roles often serve as key drivers of early marriage (13,14).

Teenage pregnancy carries a high risk of leading to stunting in infants due to the immaturity of the reproductive system, as well physical and unpreparedness (15). This can interfere with fetal growth and development (16), increasing the risk of stunting compared to pregnancies in women aged 20 and over (17,18). Additionally, a family's low economic status is a risk factor because the nutritional needs of pregnant mothers and their fetuses are not met (14,15). Based on this description, teenage pregnancies have a relatively high risk of stunting. Therefore, this study aims to further analyze whether there is a relationship between teenage pregnancy age and the incidence of stunting.

2- MATERIALS AND METHODS

2-1. Study Design

This study utilized a retrospective case-control quantitative design to investigate the correlation between teenage pregnancy and stunting.

2-2. Samples and Location

The study population consist of 201 families with toddlers aged 12-24 months in the working areas of the Rambipuji, Sumberjambe, and Ledokombo Health Centers in Jember Regency. The case group comprised 69 families with stunted toddlers, while the control group included 69 families with non-stunted toddlers. A stratified random sampling technique with a probability sampling approach was used to select participants from each group.

2-3. Data Collection

Data were collected from April to May 2025 in collaboration with the Rambipuji, Sumberjambe, and Ledokombo Health Centers. The study received institutional review board approval from the Jember City Health Office (number 000.9.2/3202/35.09.311/2025). Data were collected door-to-door, with the assistance of local posyandu cadres.

The data collection instruments included a questionnaire to gather sociodemographic information and a digital body length board (Onemed Digital Baby Scale Model: OD231B) to measure the height and weight of toddlers aged 12-24 months. The collected toddler data were then entered into the WHO Anthro application to assess growth based on WHO guidelines. The results were classified according to the standards of the Ministry of Health of the Republic of Indonesia.

2-4. Study Instruments

The study instrument was a questionnaire designed to collect information on maternal characteristics

(age, education, ethnicity, history of marriage age, and history of gestational age) and toddler characteristics (age, gender, height, weight, and body mass index).

For toddlers aged 12–24 months, weight and length were measured using a digital baby scale (Onemed Digital Baby Scale Model: OD231B). The data obtained were then entered into the WHO Anthro application, a software tool that supports the implementation of child growth standards based on WHO guidelines. Researchers used height-for-age indicators, and the results were classified according to the standards of the Ministry of Health of the Republic of Indonesia.

2-5. Data Analysis

All data were entered into SPSS software, version 25, for statistical analysis. The Chi-square statistical test was used to determine the relationship

between the independent and dependent variables. A significance value of p < 0.05 was considered statistically significant.

3- RESULTS

Table 1 indicates that the median age of mothers in the case group was 19 years, which was lower than the control group's median age of 25 years. The median age at marriage was also lower in the case group at 18 years compared to the control group at 22 years. In the case group, the majority of mothers had completed junior high school (71.02%), while in the control group, the majority completed senior high (66.67%). The majority of respondents in the case group were of Madurese ethnicity (68.1%), whereas the control group had a balanced distribution between Javanese (50.7%) and Madurese (49.3%) ethnicities.

Table-1. Distribution of Demographic Respondents Characteristics in Jember Regency, April-May (n=138).

Family and Toddler	Case	(f=69)	Control (f=69)		
Characteristics	Mean (SD)	Md (P ₂₅ -P ₇₅)	Mean (SD)	Md (P25-P75)	
Mother's age (years)	18 (0,77)	19 (18-19)	25 (2,29)	25 (20-29)	
Married age (years)	17 (0,63)	18 (17-18)	21 (1,32)	22 (20-24)	
Children's age (months)	18 (3,51)	18 (16-21)	15 (2,24)	16 (15-17)	
	f (%)		f (%)		
Tribe					
Javanese	22 ((31,9)	35 (50,7)		
Madurese	47 ((68,1)	34 (49,3)		
Educational attainment					
Primary school	7 (1	0,14)	2 (2,9)		
Junior high school	49 (*	71,02)	21 (30,4)		
Senior high school	13 (1	18,84)	46 (66,7)		
Gender of toddler					
Male	43 (6	52,32)	30 (43,5)		
Female	26 (3	37,68)	39 (56,5)		
Category of toddler (H/A)					
Very short	18 ((26,1)	9 (13)		
Short	31 ((44,9)	20 (29)		
Normal	20	(29)	40 (58)		

Notes: Md: Median, **P**₂₅**-P**₇₅: Percentiles 25-75, **f**(%): Number of participants (Percentage). **Source:** Primary Data (April-May 2025).

3-1. Age of Pregnant Mother

Kolmogorov-Smirnov results have a p value <0.05 (p-value = 0.001) at gestational age \leq 18 years, which indicates that there is a significant difference. This indicates that adolescent gestational age is more at risk of giving birth to toddlers with stunting incidence compared to adult gestational age. The median value at ≤18 years of gestational age is around 18 years of age and the median value at >18 years of age is around 24 years of age. The age of pregnant women ≤18 years is more at risk of giving birth to toddlers with stunting incidence as much as 35.51% compared to the age of pregnant women >18 years as much as 21.01%. Whereas in toddlers who are not stunted, the age of pregnant women >18 years is more at 28.99% compared to the age of pregnant women ≤18 years as much as 14.49%. Pregnant women aged 16 years are at risk of giving birth to stunted toddlers compared to pregnant women aged 31-33 years who tend to give birth to toddlers who are not stunted. In the group of toddlers who were not stunted, most of them came from a gestational age of >18 years (28.99%) and for toddlers with stunting more came from a gestational age of ≤ 18 years (35.51%).

3-2. Incidence of Stunting in Toddlers

Table 2 shows that stunted toddlers in the case group had a mean height of 74 cm, shorter than the control group's mean height of 79 cm. The case group also had a lower median weight of 8.2 kg (classified as underweight) compared to the control group's median of 9.7 kg (classified as normal). The Mann-Whitney test results showed a significant difference in heightfor-age, weight-for-age, and weight-for-height between the two groups, with a p-value of 0.001 (p<0.05). However, no significant difference was found in body mass index for age (p-value = 0.150; p>0.05).

Table-2. Distribution of Nutritional Status of Childrens Aged 12-24 Months in Jember Regency. April-May 2025 (n=138).

	Case			Control			P-value ^b
Measurement	Md(P ₂₅ -P ₇₅)	Z	P-value ^a	Md(P ₂₅ -P ₇₅)	Z	P-value ^a	
Result							
Height (cm)	74 (73-77)	0.105	0.055	79 (77-80)	0.100	0.082	0.001
Body weight	8.2 (7.8-9)	0.120	0.015	9.7 (9.08-10)	0.101	0.076	0.001
(kg)							
Nutritional status							
Height-for-Age	-2.53 (-3.042.23)	0.174	0.001	-0,01 (-0.36-0.47)	0.079	0.200	0.001
(H/A)							
Weight-for-	-1.84 (-2.561.46)	0.103	0.069	-0.47 (-0.720.1)	0.092	0.200	0.001
Age (W/A)							
Weight-for-	-1.42 (-1.860.67)	0.100	0.084	-0.53 (-0.92-0.01)	0.080	0.200	0.002
Height (W/H)							
BMI-for-Age	-1.31 (-1.760.39)	0.093	0.200	-0.68 (-1.20.15)	0.086	0.200	0.150
(BMI/A)							

Notes: Md: Median, **P**25-**P**75: Percentiles 25-75, **Z:** Calculated value of Kolmogorof Smirnov Test, **P-value:** significant Kolmogorof Smirnov Test, **P-value^b:** significant Mann-Whitney.

3-3. Relationship between Adolescent Pregnancy Age and Stunting Incidence

Table 3 reveals that the Chi-square statistical test yielded a value of $\chi 2 = 11.795$ and a p-value of 0.001 (p<0.05). The Chi-square test demonstrated a

significant association between teenage pregnancy age and the incidence of stunting in children aged 12–24 months ($\chi 2 = 11.795$, p-value = 0.001). Gestational

age of \leq 18 years was found to be 3.4 times more likely to result in a stunted child compared to a gestational age of >18 years (OR = 3.379; 95% CI = 1.67–6.85).

Table-3. The Relationship between Adolescent Pregnancy Age and Stunting Incidence in Jember Regency, April-May 2025 (n=138).

		Child Stunting Status				P-value	OR	95% CI
Gestational Age (years)	Stu	nting	Not Stunting					
	f	%	f	%				
≤18	49	35.51	20	14.49	11.975	0.001	3.379	1.67-6.85
>18	29	21.01	40	28.99				

Notes: f: number of participants, %: percentage, $\chi 2$: chi-square value; p-value: significant chi-square; f(%): number of participants (percentage); OR: Odds Ratio; 95% CI: 95 Confidence Interval.

4- DISCUSSION

This study found a significant relationship between teenage pregnancy and the incidence of stunting in toddlers aged 12-24 months, a finding confirmed by a Chisquare test (p-value = 0.001). These results indicate that teenage pregnancy increases the risk of stunting. This increased risk is largely due to the physical psychological immaturity of teenage mothers, whose bodies are often still developing and therefore not prepared for the demands of pregnancy and childbirth (7,9). The increased risk is due to the largely physical psychological immaturity of adolescent mothers, whose bodies are often still developing and thus not fully prepared for the demands of pregnancy and childbirth (11). This immaturity can lead to suboptimal nutrient transfer from mother to fetus, hindering fetal growth and increasing the likelihood of stunting.

The issue is compounded by deep-rooted cultural practices, particularly the prevalence of early marriage. Our findings highlight a significant difference in the median marriage age between the case group 18 years and the control group 22 years (18). This disparity points to the influence of local cultures, especially within the predominantly Madurese

community in our study's case group. Cultural beliefs can profoundly impact personal decisions, including those surrounding marriage (7). This demonstrates that stunting is not merely a nutritional problem but a complex issue intertwined with social and cultural norms.

Addressing stunting effectively requires a multi-faceted approach that goes beyond just medical and nutritional interventions. Families play a crucial role in prevention. This includes encouraging their children to abide by the legal marriage age of 19 years, as stipulated by Law Number 16 of 2019 (19).Additionally, providing comprehensive adolescents with reproductive health education is vital (20). cover This education should importance of delaying marriage, the physical and emotional changes during adolescence (21,22),and the associated with early pregnancy. Moreover, families must be empowered to plan their children's marriages and the birth of their first child, ensuring that mothers are at least 20 years old, which is the ideal age for a first pregnancy (21,23).

Ultimately, the fight against stunting must also address the socioeconomic factors that contribute to it. Families must be supported in fulfilling the nutritional needs of both pregnant women and toddlers. This study's findings underscore the urgent need for comprehensive interventions that tackle the social and cultural drivers of early marriage and teenage pregnancy.

4-1. Limitation

The main limitation of this study is its narrow focus on maternal age at marriage and pregnancy. This single-factor approach prevents a comprehensive analysis of other significant variables that contribute to stunting, such as family income, parenting patterns, and other environmental factors. Future research should include these variables to provide a more holistic and accurate understanding of stunting incidence.

5- CONCLUSION

There is a significant association between teenage pregnancy and stunting in toddlers aged 12-24 months. Our findings indicate that mothers aged ≤ 18 years are 3.4 times more likely to have a stunted child compared to mothers aged >18 years (OR = 3.379, p < 0.05). This study underscores the crucial role of nurses in preventing teenage pregnancies and their consequences.

Nurses should act as health educators by providing reproductive health information, counselors by helping adolescents manage peer pressure and emotional issues, and advocates by facilitating access to youth-friendly health services. Additionally, they should serve as caregivers, offering medical and psychological support to pregnant teenagers to mitigate the risks associated with adolescent pregnancy and childbirth.

6-ETHICAL CONSIDERATIONS

This study has been approved by the Ethics Committee of the Faculty of Nursing at Jember University, Indonesia (Number: 125/UN25.1.14/KEPK/2025). Respondents received informed consent and an explanation about the study's objectives and procedures before

answering the questionnaire. They were also allowed to ask for clearer explanations for any doubts they have to ensure informed consent. Participants were volunteers and had the right to withdraw from the study.

7- CONFILCT OF INTEREST

The author declared no conflict of interest.

8- AKNOWLEDGMENTS

The authors would like to thank the Faculty of Nursing at the University of Jember, as well as the Rambipuji, Sumberjambe, and Ledokombo Public Health Centers for their permission and support during the implementation of this study.

9- REFERENCES

- 1. Yulius Y, Abidin UW, Liliandriani A. Hubungan Pernikahan Dini Terhadap Kejadian Stunting Pada Balita Di Wilaya Kerja Puskesmas Tawalian Kecamatan Tawalian Kabupaten Mamasa. Journal Peqguruang. 2020 May 28;2(1):279-82.
- 2. Mustakim MR, Irawan R, Irmawati M, Setyoboedi B. Impact of stunting on development of children between 1-3 years of age. Ethiopian journal of health sciences. 2022 May 1;32(3).
- 3. Nuryuliyani E. Mengenal Lebih Jauh Tentang Stunting. Yankes. Kemkes. Go. Id. July. 2023;28:2023.
- 4. Latifah AI, Zahra AA, Faizah R. Makna pernikahan dini pada remaja magelang. Borobudur Psychology Review. 2021 Dec 1;1(2):70-82.
- 5. Putri PS, Arlenti L, Zainal E. Hubungan kehamilan remaja dengan kejadian stunting di Puskesmas Ulu Talo Kabupaten Seluma. Jurnal Kebidanan Besurek. 2023 Jun 30;8(1):1-6.
- 6. Permatasari C. Pernikahan Usia Dini dan Risiko Terhadap Kejadian Stunting pada Baduta di Puskesmas Kertek 2,

- Kabupaten Wonosobo. HIGEIA (Journal of Public Health Research and Development). 2022 Jan 31;6(1).
- 7. Azza A, Yunitasari E, Triharini M. Pernikahan Dini Dalam perspektif Budaya dan Kesehatan (Studi Kasus pada masyarakat Madura-Jember): Studi Kasus pada masyarakat Madura-Jember. National Multidisciplinary Sciences. 2022 Jul 11;1(4):601-7.
- 8. Ningrum DN, Gumiarti G, Toyibah A. Literature Review Faktor Kehamilan Remaja. Media Kesehatan Politeknik Kesehatan Makassar. 2021 Dec 29;16(2):362-8.
- 9. Fiolentina CE, Ernawati R. Hubungan kehamilan remaja dengan kejadian stunting di Puskesmas Harapan Baru Samarinda Seberang. Borneo Studies and Research. 2021 Dec 29;3(1):17-24.
- 10. Perempuan Perlindungan Anak dan Keluarga Berencana (DPPPAKB). Pendatatan Nikah Jember. (2020). Accessed on: https://dpppakb.jemberkab.go.id/
- 11. Ningsih AP, Suriah S, Syafar M, Muis M, Sukri S, Abdullah MT. Analisis Sosial Budaya terkait Pernikahan Usia Dini di Kepulauan Selayar. Perilaku dan Promosi Kesehatan: Indonesian Journal of Health Promotion and Behavior. 2020 Dec 31;2(2):1.
- 12. Kominfo, D. 80% Diskan di Sebabkan Hamil Duluan.2023. Accessed on: https://kominfo.jatimprov.go.id/berita/80-diskan-di-sebabkan-hamil-duluan
- 13. Wariin S, Susanto T, Rahmawati I. Functions of Agrarian Families in the Prevention of Stunting: A Literature Review. Jurnal Keperawatan Komprehensif (Comprehensive Nursing Journal). 2024 Jan 30;10(1).
- 14. A'ilah I, Ekasari T, Supriadi B. The Relationship Economic Status With Events

- Low Birth Weight (LBW) in Babies in The Working Area Of Mangaran Health Center Situbondo District. Jurnal Genta Kebidanan. 2023 Dec 28:13(1):7-12.
- 15. Suswati WS, Yuhbaba ZN, Budiman ME. Psikoedukasi Dengan Pendekatan Skill Training Model Terhadap Kemampuan Mengenali Perkembangan Psikososial Remaja. Jurnal Kesehatan Kusuma Husada. 2024 Jul 29:74-82.
- 16. Pradini SA, Ariani M, Fetriyah UH. Hubungan Riwayat Kehamilan Remaja (12-28 tahun) dan Jarak Kelahiran dengan Kejadian Stunting pada Balita di Puskesmas Pekauman Banjarmasin. Jurnal Delima Harapan. 2024 Sep 27;11(2):58-65.
- 17. Cindrya E. Pengetahuan Tentang Kehamilan Remaja Pada Orangtua Anak Usia Dini Di DESA MUARA BURNAI II KABUPATEN OKI SUMATERA SELATAN. Raudhatul Athfal: Jurnal Pendidikan Islam Anak Usia Dini. 2019 Jun 25;3(1):66-82.
- 18. Astuti FD, Azka A, Rokhmayanti R. Maternal age correlates with stunting in children: systematics review. Journal of Maternal and Child Health. 2022 Jul 16;7(4):479-48.
- 19. Susanto W.H.A, Lembang F.T.D, Yulianti N.R, Hasniati, Syarif I, Aji R, et al. Holistic & Transcultural Nursing. Padang: PT Global Eksekutif Teknologi. 2023
- 20. Sari DP, Handayani TY, Yolanda K. Analisis Faktor Yang Berhubungan Dengan Kehamilan Remaja Di Kota Batam Tahun 2019. Journal Of Midwifery. 2019 Nov 19;7(2):19-27.
- 21. Bkkbn. Pendewasaan Usia Perkawinan (PUP). 2023. Accessed on: https://kampungkb.bkkbn.go.id/kampung/9 612/intervensi/606060/pendewasaan-usia-perkawinan-pup

- 22. Susanto T, Yunanto RA, Rasny H, Susumaningrum LA, Nur KR. Promoting Children Growth and Development: A community-based cluster randomized controlled trial in rural areas of Indonesia. Public Health Nursing. 2019 Jul;36(4):514-24.
- 23. Susanto T, Rasni H, Susumaningrum LA. Prevalence of malnutrition and stunting among under-five children: A cross-sectional study family of quality of life in agricultural areas of Indonesia. Mediterranean Journal of Nutrition and Metabolism. 2021 Jun 3;14(2):147-61.