

Original Article (Pages: 19721-19728)

Clinical Manifestations of Pediatric Pneumonia Aged 3 Months to 12 years; Evaluation of Effect of Vitamin A

Farhad Heydarin ¹, * Sara Amini ², Tahereh Ansarinejad ²

Abstract

Background: The effect of vitamin A on clinical manifestations of pediatric pneumonia was evaluated.

Method: In this randomized double-blinded clinical trial, ninety children between 3 months and 12 years of age with pneumonia admitted to Qaem and Dr. Sheikh Hospital children's ward were assessed. They were randomly divided into two groups: one receiving vitamin A (or retinol) and the other receiving a placebo. Clinical features such as tachypnea, fever, cough, rales, wheezing, and intercostal retraction were recorded and compared between the groups every 12 hours for 120 hours. The significance level was set at less than 0.05.

Results: Of the participants, 42 patients (46.7%) were female and 48 (53.3%) were male. The mean age of all children was 18.37 ± 9.23 months. There were no significant differences between the groups in terms of age and sex (P-values > 0.05). In the group receiving vitamin A, fever was significantly reduced after 60 hours, (P-values < 0.05) and cough was significantly reduced at 24 hours (P-value: 0.025) and 36 hours (P-value: 0.049). However, vitamin A had no effects on other clinical manifestations of pediatric pneumonia (all P-values > 0.05).

Conclusion: The prescription of vitamin A was effective in reducing fever and cough in pediatric pneumonia.

Key Words: Pediatric, Pneumonia, Retinol, Vitamin A.

* Please cite this article as: Heydarin F, Amini S, Ansarinejad T. Clinical Manifestations of Pediatric Pneumonia Aged 3 Months to 12 years; Evaluation of Effect of Vitamin A. J Ped Perspect 2025; 13 (10):19721-19728. **DOI: 10.22038/jpp.2025.90197.5585**

Sara Amini, Department of Pediatrics, Mashhad University of Medical Science, Mashhad, Iran. Email: aminis@mums.ac.ir

¹ Department of Pediatrics, Dr. Sheikh hospital, Mashhad university of Medical Science, Mashhad, Iran.

² Department of Pediatrics, Mashhad University of Medical Science, Mashhad, Iran.

^{*}Corresponding Author:

1- INTRODUCTION

Pneumonia can be caused mainly by viruses and bacteria. Among the types community-acquired pneumonia, pneumonia (CAP) is the most common and responsible for about 80% of deaths in children affected by respiratory tract infections (1-4). It is estimated that 7%-13% of all pneumonia cases require hospitalization, and in severe cases especially in young children (5, 6). It can let to death. Vitamin A has various physiological effects related to vision, growth, cell differentiation, hematopoiesis, and immune system reactivity (7, 8) However, there is still no consensus in the literature regarding the effectiveness of supplementation this in respiratory disorders (9, 10).

Several studies have investigated the effectiveness of nutritional and dietary interventions, such as vitamins, minerals, and probiotics for the treatment of acute respiratory infections in children (11). While some studies have reported beneficial effects, including reductions in or hospitalization symptom severity duration, particularly in relation to zinc supplementation for pneumonia, overall evidence remains inconclusive. Meta-analyses indicate that no specific dietary supplement can currently be recommended for the routine treatment of these infections. Limited studies have investigated the effect of vitamin A on pediatric pneumonia (12).

Therefore, this study aimed to investigate the potential therapeutic effects of vitamin A supplementation on clinical outcomes in pediatric patients diagnosed with pneumonia. Specifically, we focused on evaluating its impact on the severity of clinical manifestations and the duration of hospitalization, given the existing but inconclusive evidence regarding its efficacy in respiratory infections.

2- METHOD

This study was conducted as a double-blind clinical trial on children aged 3 months to 12 years hospitalized for pneumonia in the pediatric wards of Ghaem and Dr. Sheikh Hospital.

The inclusion criteria included children aged 3 months to 12 years with a diagnosis of pneumonia based on clinical and radiological assessment. The exclusion criteria were any chronic disease, diabetes mellitus, asthma, acute bronchiolitis, and recent vitamin A intake within the last 72 hours, and a history of hospitalization within the last three weeks.

A total of 45 children were used as controls, and 45 children as cases. Pneumonia was diagnosed based history, physical examination, radiography, and a radiologist's written report confirming the presence pneumonia. The children were randomly divided into two groups. The control group received a placebo that was identical in in shape, color, and taste to the drug, while the second group received vitamin A syrup (10,000 units for children under one year and 15,000 units for children over one year) daily during hospitalization (syrup ordered from Dr. Rakhshandeh's pharmacy). Blood samples were taken at beginning of hospitalization determine serum retinol levels. Patient symptoms, such as tachypnea, fever, cough, retraction, rales, and wheezing, were evaluated every twelve hours and recorded in a questionnaire during hospitalization.

2-1. Statistical Analysis

After coding, the data were analyzed using SPSS software on a computer. Appropriate central dispersion indices, tables, and charts were utilized for description. The t-test was employed to analyze and compare quantitative and normally distributed variables, while the Mann-Whitney test was used for quantitative and nonnormally distributed variables.

2-2. Ethical Considerations

This study was approved by the ethical committee of Mashhad University of Medical Science (IR.MUMSREC.1391.93).

3- RESULTS

In this study, 45 children were assessed as intervention group and 45 children were assessed as control group.

The demographic data of both groups can be seen in Table 1.

We assessed respiratory signs and symptoms in the groups, and the related data can be found in Table 2. Based on our findings, only cough was significantly reduced in the intervention (retinol) group at 24 and 36 hours post-medication (P-value: 0.025 and P-value: 0.049, respectively). Other measures showed no significant differences between the two groups.

Table-1. The demographic data of participants based on groups.

	Group						
	Retinol		Control		Total		
	Number	Perce	ent	Number	Percent	Number	Percent
Girl	20	44/4	4	22	48.9	42	46.7
Boy	25	55/6	6	23	51/1	48	53/3
Total	45	100	0	45	100	90	100
P-value*	0.456						
	Group						
Age]		Retinol	Control		Total
(Month)	Mean			15.8	20.94		18.37
	Standard deviat	andard deviation		7.6	8.8		9.23
	P-value**				0.989		·

^{*} P-value based on Chi-square test

Fever was assessed in the groups at different times, and the related results are shown in Table 3. Based on our findings, there was no difference between the groups during the first 48 hours. However, the retinol group had significantly lower fever than the control group after 48 hours (P-values < 0.05), and retinol administration significantly reduced the fever on days 3 and 4.

Retinol levels were also measured in the case and control groups. Serum retinol levels in the control group were less than 0.2 mg/L in 22 patients (49%) and higher than 0.2 mg/L in 23 patients (51%). In the case group, these numbers were 25 (56%) and 20 patients (44%), respectively, and this difference was not significant (P=0.526) as shown in Table 4.

Table-2. Respiratory sign and symptoms in different time of assessment in the groups.

Tachypnea				
Time of assessment	Control (number/percent)	Retinol (number/percent)	P-value	
12 hours	45 (100)	45 (100)	-	
24 hours	45 (100)	45 (100)	-	
36 hours	45 (100)	45 (100)	-	
48 hours	45 (100)	45 (100)	1	
60 hours	35 (77/7)	34 (75/5)	0.723	
72 hours	26 (57/7)	21 (46/6)	0.231	
84 hours	16 (35/5)	12 (26/6)	0.412	
96 hours	10 (22/2)	8 (17/7)	0.605	

^{**}P-value based on Mann-U- Whitney test

108 hours	7 (15/5)	6 (13/3)	0.654
120 hours	1 (2/2)	1 (2/2)	0.497
120 110415	Cough	1 (2,2)	0.157
Time of assessment	Control (number/percent)	Retinol (number/percent)	P-value
12 hours	45 (100)	45 (100)	0.97
24 hours	45 (100)	37 (80.4)	0.025
36 hours	45 (100)	37 (80.4)	0.049
48 hours	44 (97.7)	37 (80.4)	0.089
60 hours	39 (86.6)	33 (73.3)	0.241
72 hours	26 (57.7)	21 (46.6)	0.321
84 hours	13(50)	12 (26.6)	0.761
96 hours	7 (15.5)	8 (17.7)	0.650
108 hours	6 (13.3)	5 (11.1)	0.651
120 hours	4 (8.8)	1 (2.2)	0.290
	Retraction		
Time of assessment	Control (number/percent)	Retinol (number/percent)	P-value
12 hours	21(46/6)	18 (36)	0.712
24 hours	20 (44/4)	18 (36)	0.421
36 hours	20 (44/4)	18 (36)	0.421
48 hours	19 (42/2)	15 (33/3)	0.458
60 hours	13 (28/8)	11 (24/4)	0.312
72 hours	7 (15/5)	7 (15/5)	1
84 hours	4 (8/8)	4 (8/8)	1
96 hours	1(2/2)	1(2/2)	1
108 hours	0	1(2/2)	1
120 hours	0	0	-
	Wheezing		
Time of assessment	Control (number/percent)	Retinol (number/percent)	P-value
12 hours	17 (36.9)	11 (24.4)	0.245
24 hours	17 (36.9)	11 (24.4)	0.189
36 hours	15 (33.3)	11 (24.4)	0.165
48 hours	11 (24.4)	7 (15.5)	0.245
60 hours	6 (13.3)	7 (15.5)	0.567
72 hours	5 (11.1)	6 (13.3)	0.134
84 hours	2 (4.4)	2 (4.4)	1
96 hours	2 (4.4)	2 (4.4)	1
108 hours	1 (2.2)	1 (2.2)	1
120 hours	1 (2.2)	1 (2.2)	1
TD* C	Rales		D 1
Time of assessment	C41 (1	D - 4'1 (1/4)	
12 hours	Control (number/percent)	Retinol (number/percent)	P-value
12 hours	42 (93.3)	40 (88.8)	0.603
24 hours	42 (93.3) 40 (88.8)	40 (88.8) 40 (88.8)	0.603
24 hours 36 hours	42 (93.3) 40 (88.8) 40 (88.8)	40 (88.8) 40 (88.8) 40 (88.8)	0.603 1 1
24 hours 36 hours 48 hours	42 (93.3) 40 (88.8) 40 (88.8) 37 (80.4)	40 (88.8) 40 (88.8) 40 (88.8) 36 (80)	0.603 1 1 0.989
24 hours 36 hours 48 hours 60 hours	42 (93.3) 40 (88.8) 40 (88.8) 37 (80.4) 29 (63)	40 (88.8) 40 (88.8) 40 (88.8) 36 (80) 29 (63)	0.603 1 1 0.989 1
24 hours 36 hours 48 hours 60 hours 72 hours	42 (93.3) 40 (88.8) 40 (88.8) 37 (80.4) 29 (63) 21 (46.6)	40 (88.8) 40 (88.8) 40 (88.8) 36 (80) 29 (63) 21 (46.6)	0.603 1 1 0.989 1
24 hours 36 hours 48 hours 60 hours 72 hours 84 hours	42 (93.3) 40 (88.8) 40 (88.8) 37 (80.4) 29 (63) 21 (46.6) 16 (35.5)	40 (88.8) 40 (88.8) 40 (88.8) 36 (80) 29 (63) 21 (46.6) 12 (26.6)	0.603 1 1 0.989 1 1 0.239
24 hours 36 hours 48 hours 60 hours 72 hours 84 hours 96 hours	42 (93.3) 40 (88.8) 40 (88.8) 37 (80.4) 29 (63) 21 (46.6) 16 (35.5) 8 (17.7)	40 (88.8) 40 (88.8) 40 (88.8) 36 (80) 29 (63) 21 (46.6) 12 (26.6) 9 (20)	0.603 1 1 0.989 1 1 0.239 0.432
24 hours 36 hours 48 hours 60 hours 72 hours 84 hours	42 (93.3) 40 (88.8) 40 (88.8) 37 (80.4) 29 (63) 21 (46.6) 16 (35.5)	40 (88.8) 40 (88.8) 40 (88.8) 36 (80) 29 (63) 21 (46.6) 12 (26.6)	0.603 1 1 0.989 1 1 0.239

P-value based on Chi-square test

Table-3. Comparison of fever in both groups.

	Control (number/percent)	Retinol (number/percent)	P-value
12 hours	45 (100)	45 (100)	-
24 hours	45 (100)	45 (100)	-
36 hours	45 (100)	45 (100)	1
48 hours	44 (97.7)	41 (91.1)	0.345
60 hours	36(80)	19(42.2)	0.002
72 hours	21(46.6)	7(15.5)	0.004
84 hours	10(22.2)	3(6.6)	0.024
96 hours	6(13.3)	0	0.027
108 hours	2(4.4)	0	0.614
120 hours	1(2.2)	0	1

P-value based in Chi-square

Table-4. Comparison of serum retinol levels in control and retinol groups.

		Group	
		Control	Retinol
		(number/percent)	(number/percentage)
Retinol	Less than or equal to 0.2 mg/L	22 (49%)	25 (56%)
levels	More than 0.2 mg/L	23 (51%)	20 (44%)
P-value		0.526	

P-value based in Chi-square

The number of hospitalization days was compared between both groups. According to Table 5, the mean hospitalization days in the retinol group were 4.34±1.15 days

and in the control group, they were 4.19±1.21 days. This difference was not significant (P=0.528).

Table-5. Average days of hospitalization in the retinol and control groups.

	Mean ± SD
Average days of hospitalization in the retinol group	1.15± 4.34
Average days of hospitalization in the control group	1.21±4.19
P-value	0.528

4- DISCUSSION

In the current study, we assessed the effect of vitamin A on clinical manifestations of pneumonia in pediatrics. We found that vitamin A significantly reduced fever (after 60 hours) and cough (at 24 hours and 36 hours) of medication but had no effects on other clinical manifestations of pediatric pneumonia.

Hu et al. evaluated the effect of vitamin A supplementation as an adjuvant therapy in pediatric pneumonia. They found that vitamin A administration significantly reduced the duration of fever and cough and length of hospital stay without

inducing adverse effects (13) .In our study, we also found that vitamin A supplementation decreased fever and cough. While these studies were similar in this respect, there was no difference in the length of hospital stay between the two groups, This was one of the differences between the two studies, but both studies highlighted the beneficial effects of vitamin A supplementation in pediatrics with pneumonia.

Vitamin A is essential for immune function and healing after infections. Research shows that children in low- and middle-income countries often have inadequate levels of these nutrients (14,

15). Vitamin A deficiency can severely affect pediatric health, contributing to increased morbidity and mortality. It weakens immune function and the respiratory epithelium, potentially causing scaly metaplasia, which reduces defenses against infections and heightens bronchial reactivity (16, 17). An integrative review illustrated that subclinical vitamin A deficiency is prevalent in pediatric pneumonia (18). These issues highlight that hypovitaminosis of vitamin A has a remarkable effect on the occurrence of worsening pneumonia.

A study assessed vitamin A's effects on immunologically. pneumonia showed that serum vitamin A levels in neonatal pneumonia from S. pneumoniae in mice were below 0.7 µmol/L from days 2 to 7 post-infection, and pulmonary production vitamin A remained significantly lower than in control mice from days 7 to 28. Vitamin supplementation after infection increased Foxp3+ regulatory T cells and Th1 cells while decreasing Th2 and Th17 cells. This treatment also alleviated airway hyperresponsiveness and reduced inflammatory cell infiltration in allergic airway disease (19). There are limited studies as clinical trials in this respect, and performing the current clinical trial was one of the advantages of our study. Based on the mentioned study, vitamin A administration improve can immunologic response against common causes of bacterial pneumonia. Our study did not assess laboratory response, but we showed that administration of this vitamin can improve patients' fever and cough.

Although in our study the length of hospital stay in our patients had no differences between two groups, in the study of Atta et al. they found that the supplementation significantly reduced the length of the hospital stay (20), similar to Hu et al.'s study (13). It should be noted

that Atta et al. assessed the effect of the combination of vitamin A and zinc.

Although in a systematic review and metaanalysis study a few number of clinical trials conducted, continuous vitamin A administration did not show any positive clinical effects on acute respiratory tract infections (12).

Previous studies have shown that vitamin A administration, whether preventive or therapeutic, is not recommended as an effective intervention in the management of childhood pneumonia, except in specific cases of documented severe vitamin A deficiency (21). However, the results of the present study demonstrated that in our patients, vitamin A supplementation significantly reduced the severity of symptoms such as cough and fever.

So, it seems that administering vitamin A in pediatric pneumonia maybe favorable. However, because of the lack of studies in this respect, more studies should be done to evaluate the clinical and laboratory effects of the prescription of vitamin A in pediatrics who suffer from pneumonia. Our limitations in this study are the sample size. Increasing the number of samples and the multicenter nature of the study would have a great impact on the results. Further studies should also evaluate the effects of this supplementation on different types of infections.

5- CONCLUSION

Vitamin A supplementation may be a helpful additional to the treatment of pediatric pneumonia. However, more welldesigned clinical trials are needed to confirm its effectiveness and establish standardized treatment protocols.

6- ACKNOWLEDGMENTS

Many thanks to the Vice Chancellor Mashhad University of Medical Sciences for their financial support.

7- REFERENCES

- 1. Souza JM, Lins LS, Meireles JM, Dantas MS, Torquato IM. Incidence of Pneumonia in Children in the City of João Pessoa/PB from 2000 to 2008. Revista do unipê. 2010;14(2):147-50.
- 2. Chowdhury S, Mishu AA, Rahman MM, Zayed NM. An analysis of factors for acute respiratory infections (ARI) in children under five of age in Bangladesh: a study on DHS, 2014. J Midwifery, Women Heal Gynaecol Nurs. 2020 Mar;2(2):26-32.
- 3. Krishnan A, Kumar R, Broor S, Gopal G, Saha S, Amarchand R, et al. Epidemiology of viral acute lower respiratory infections in a community-based cohort of rural north Indian children. Journal of global health. 2019 May 12;9(1):010433.
- 4. Amorim PG, Morcillo AM, Tresoldi AT, Fraga AD, Pereira RM, Baracat EC. Factors associated with complications of community-acquired pneumonia in preschool children. Jornal Brasileiro de Pneumologia. 2012;38:614-21.
- 5. Caldart RV, Marrero L, Basta PC, Fatores Orellana JD. associados em crianças Yanomami pneumonia internadas por condições sensíveis à atenção primária na região norte do Brasil. Saúde Coletiva. Ciência & 2016 May;21(5):1597-606.
- 6. Masarweh K, Gur M, Toukan Y, Bar-Yoseph R, Kassis I, Gut G, et al. Factors associated with complicated pneumonia in children. Pediatric Pulmonology. 2021 Aug;56(8):2700-6.
- 7. Imdad A, Mayo-Wilson E, Haykal MR, Regan A, Sidhu J, Smith A, et al. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane database of systematic reviews. 2022(3).

- 8. Stevens GA, Bennett JE, Hennocq Q, Lu Y, De-Regil LM, Rogers L, et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. The Lancet Global Health. 2015 Sep 1;3(9):e528-36.
- 9. Wirth JP, Petry N, Tanumihardjo SA, Rogers LM, McLean E, Greig A, et al. Vitamin A supplementation programs and country-level evidence of vitamin A deficiency. Nutrients. 2017 Feb 24:9(3):190.
- 10. Abdelkader A, Wahba AA, El-Tonsy M, Zewail AA, Eldin MS. Recurrent respiratory infections and vitamin A levels: a link? It is cross-sectional. Medicine. 2022 Aug 19;101(33):e30108.
- 11. Wang X, Li X, Jin C, Bai X, Qi X, Wang J, et al. Association between serum vitamin A levels and recurrent respiratory tract infections in children. Frontiers in pediatrics. 2021 Dec 24;9:756217.
- 12. Milani GP, Alberti I, Abodi M, Lakoumentas J, Konstantinou GN, Papadopoulos NG, et al. A systematic review and meta-analysis on nutritional and dietary interventions for the treatment of acute respiratory infection in pediatric patients: An EAACI taskforce. Allergy. 2024 Jul;79(7):1687-707.
- 13. Hu N, Li QB, Zou SY. Effect of vitamin A as an adjuvant therapy for pneumonia in children: a Meta analysis. Zhongguo Dang dai er ke za zhi= Chinese Journal of Contemporary Pediatrics. 2018 Feb 1;20(2):146-53.
- 14. Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system—working in harmony to reduce the risk of infection. Nutrients. 2020 Jan 16;12(1):236.
- 15. Hume-Nixon M, Graham H, Russell F, Mulholland K, Gwee A, ARI Review group. Review of the role of additional

- treatments including oseltamivir, oral steroids, macrolides, and vitamin supplementation for children with severe pneumonia in low-and middle-income countries. Journal of Global Health. 2022 Aug 22;12:10005.
- 16. Marquez HA, Cardoso WV. Vitamin A-retinoid signaling in pulmonary development and disease. Molecular and Cellular Pediatrics. 2016 Aug 1;3(1):28.
- 17. Timoneda J, Rodríguez-Fernández L, Zaragozá R, Marín MP, Cabezuelo MT, Torres L, et al. Vitamin A deficiency and the lung. Nutrients. 2018 Aug 21;10(9):1132.
- 18. Mendes AD, De Souza AM, Nunes AD, Jerez-Roig J, Barbosa IR. Frequency of vitamin a deficiency in children hospitalized for Pneumonia: An integrative

- review. Public Health Reviews. 2022 Dec 13;43:1604500.
- 19. Tian Y, Tian Q, Wu Y, Peng X, Chen Y, Li Q, et al. Vitamin A supplement after neonatal Streptococcus pneumoniae pneumonia inhibits the progression of experimental asthma by altering CD4+ T cell subsets. Scientific reports. 2020 Mar 6;10(1):4214.
- 20. Atta A, Aftab A, Shafqat A, Yousuf MH, Ahmed A, Pirzada H, et al. Investigating the Efficacy of Zinc and Vitamin A in Treating Pediatric Community-Acquired Pneumonia. Cureus. 2024 Jan 13;16(1).
- 21. Mathew JL. Vitamin A supplementation for prophylaxis or therapy in childhood pneumonia: A systematic review of randomized controlled trials. Indian Pediatr. 2010 Mar 1;47(3):255-61.