Document Type : original article

Authors

1 Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

2 Department of Pediatric Cardiology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.

3 Department of Community Medicine, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran.

4 Kidney Transplantation Complications Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Abstract

Background: Nephrotic syndrome (NS) in children is characterized by heavy proteinuria, hypoalbuminemia, and edema. Hypocalcemia, commonly resulting from urinary loss of albumin-bound calcium, can prolong the QT interval, increasing the risk of ventricular arrhythmias. This study aimed to evaluate the effect of albumin administration on the corrected QT (QTc) interval in pediatric NS patients
Methods: A cross-sectional study was conducted on 20 children with NS and hypoalbuminemia who received albumin infusions. Baseline electrocardiograms (ECGs) and serum parameters, including albumin and electrolyte levels, were recorded before and after albumin infusion. QTc intervals were calculated using Bazett’s formula. The Wilcoxon signed-rank test was used to assess changes in QTc before and after infusion.
Results: The study included 20 children with NS (15 males, 5 females; mean age 6 ± 4 years). The mean serum albumin level was 2 ± 0 g/dL, indicating significant hypoalbuminemia. Hypocalcemia was present in 79% of patients and was associated with higher QTc intervals. The mean QTc decreased from 411 ± 45 ms pre-infusion to 401 ± 44 ms post-infusion, showing a statistically significant reduction (p < 0.001), particularly in patients with hypocalcemia.
Conclusion: Albumin administration significantly reduces QTc intervals in children with NS, especially those with hypocalcemia, potentially lowering the risk of arrhythmias. Further research is warranted to evaluate the long-term cardiac effects of albumin therapy in this population.

Keywords

  1. Vivarelli M, Gibson K, Sinha A. Olivia Boyer. Childhood nephrotic syndrome. Lancet. 2023;402(10404):809-24.
  2. Rodriguez-Ballestas E, Reid-Adam J. Nephrotic syndrome. Pediatrics in Review. 2022 Feb 1;43(2):87-99.
  3. Thakor JM, Mistry KN, Gang S. Association between serum calcium and biochemical parameters among nephrotic syndrome patients: a case-control study. Egyptian Pediatric Association Gazette. 2022 Jul 11;70(1):18.
  4. Mattoo TK, Sanjad S. Current understanding of nephrotic syndrome in children. Pediatric Clinics. 2022 Dec 1;69(6):1079-98.
  5. Tamura H. Trends in pediatric nephrotic syndrome. World journal of nephrology. 2021 Sep 25;10(5):88.
  6. Yang SP, Ong L, Loh TP, Chua HR, Tham C, Meng KC, et al. Calcium, Vitamin D, and Bone Derangement in Nephrotic Syndrome. Journal of the ASEAN Federation of Endocrine Societies. 2021 May 3;36(1):50.
  7. Hilmanto D, Mawardi F, Lestari AS, Widiasta A. Disease-associated systemic complications in childhood nephrotic syndrome: a systematic review. International Journal of Nephrology and Renovascular Disease. 2022 Feb 25:53-62.
  8. Tang JK, Rabkin SW. Hypocalcemia-induced QT interval prolongation. Cardiology. 2022 Apr 5;147(2):191-5.
  9. Heemskerk CP, Pereboom M, van Stralen K, Berger FA, van den Bemt PM, Kuijper AF, et al. Risk factors for QTc interval prolongation. European journal of clinical pharmacology. 2018 Feb;74(2):183-91.
  10. Trinkley KE, Lee Page R, Lien H, Yamanouye K, Tisdale JE. QT interval prolongation and the risk of torsades de pointes: essentials for clinicians. Current medical research and opinion. 2013 Dec 1;29(12):1719-26.
  11. Antzelevitch C. Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace. 2007 Sep 1;9(suppl_4):iv4-15.
  12. Coll M, Ferrer-Costa C, Pich S, Allegue C, Rodrigo E, Fernández-Fresnedo G, Barreda P, et al. Role of genetic and electrolyte abnormalities in prolonged QTc interval and sudden cardiac death in end-stage renal disease patients. PLoS One. 2018 Jul 18;13(7):e0200756.
  13. Jackson AA. Albumin in nephrotic syndrome and oedematous malnutrition. Paediatrics and international child health. 2015 May 13;35(2):77-80.
  14. Ho JJ, Adnan AS, Kueh YC, Ambak NJ, Van Rostenberghe H, Jummaat F. Human albumin infusion for treating oedema in people with nephrotic syndrome. Cochrane Database of Systematic Reviews. 2019(7).
  15. Kenny CM, Murphy CE, Boyce DS, Ashley DM, Jahanmir J. Things we do for no reason™: calculating a “corrected calcium” level. Journal of hospital medicine. 2021 Aug;16(8):499-501.
  16. Hampson KJ, Gay ML, Band ME. Pediatric nephrotic syndrome: pharmacologic and nutrition management. Nutrition in Clinical Practice. 2021 Apr;36(2):331-43.
  17. Eryol NK, Çolak R, Tanrıverdi F, Ünal Ş, Topsakal R, üseyin Katlandur H, et al. Effects of calcium treatment on QT interval and QT dispersion in hypocalcemia. American Journal of Cardiology. 2003 Mar 15;91(6):750-2.
  18. Trautmann A, Boyer O, Hodson E, Bagga A, Gipson DS, Samuel S, et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatric nephrology. 2023 Mar;38(3):877-919.
  19. Meena J, Bagga A. Current perspectives in management of edema in nephrotic syndrome. The Indian Journal of Pediatrics. 2020 Aug;87(8):633-40.
  20. Winata VI, Gurnida DA, Sekarwana N. Relationship between ionized calcium and serum albumin level in children with idiopathic nephrotic syndrome. Paediatrica Indonesiana. 2010;50(6):361-4.
  21. Avci BS, Avci A, Aksu A, Gulen M, Yesiloglu O, Koca H, et al. QTc, Tp-e interval and Tp-e/QTc ratio in patients with hypocalcemia-case control study. International Journal of Cardiovascular Sciences. 2021 Apr 28;34(5 Supl 1):87-94.
  22. Nijjer S, Ghosh AK, Dubrey SW. Hypocalcaemia, long QT interval and atrial arrhythmias. Case Reports. 2010 Jan 1;2010:bcr0820092216.
  23. Aktürk G, Kalkan Ş. Drug-induced QT interval prolongation: mechanisms, risk factors, genetics and clinical management. Journal of Basic and Clinical Health Sciences. 2019 Sep 1;3(3):193-8.
  24. Bihari S, Bannard-Smith J, Bellomo R. Albumin as a drug: its biological effects beyond volume expansion. Critical Care and Resuscitation. 2020 Sep 1;22(3):257-65.
  25. Kuten Pella O, Hornyák I, Horváthy D, Fodor E, Nehrer S, Lacza Z. Albumin as a biomaterial and therapeutic agent in regenerative medicine. International journal of molecular sciences. 2022 Sep 12;23(18):10557.
  26. De Witte F, Klag A, Chapman P. Adjusted calcium concentration as a predictor of ionized hypocalcemia in hypoalbuminemic dogs. Journal of Veterinary Internal Medicine. 2021 Sep;35(5):2249-55.
  27. Caraceni P, Tufoni M, Bonavita ME. Clinical use of albumin. Blood transfusion. 2013 Sep;11(Suppl 4):s18.
  28. Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta physiologica. 2017 Jul;220:1-71.